Abstract:
A spool valve is associated with a hydraulic system and includes a valve body delineating an inlet port, a relief port, and an actuator port. A spool is movably disposed inside the valve body between relief position, an opened position, and a modulating position. A solenoid can initially urge the spool from the relief position to the opened position to establish fluid communication between the inlet port and the actuator port. As a result, flow forces can further urge the spool to the opened position. When fluid communication between the inlet port and the actuator port ceases, the spool moves to a modulating position.
Abstract:
A method regulates the torque output and/or speed output of a continuously variable transmission (CVT) in a manner that may simulate a clutch. The CVT may be incorporated in a machine and maybe operatively coupled to a power source and to a propulsion device. The method utilizes an unaltered torque-to-speed curve that relates the torque output to the speed output of the CVT. The method may receive an operator input signal indicating a desire to change operation of the machine. The torque-to-speed curve may be shifted in response to the operator input signal to limit the torque output available. In an aspect, an under-run curve may be applied to the torque-to-speed curve, the under-run curve corresponding to a target speed. The operator input signal may also shift the under-run curve to reduce the target speed.
Abstract:
A machine is described that includes an electric drive for propelling the machine along a ground surface. The machine includes an electric power system having a first generator and a second generator. The electric power system also includes a first rectifier coupled to the first generator and having a first direct current (DC) power output and a second rectifier coupled to the second generator and having a second DC power output. Both the first DC output and the second DC output are coupled to the single DC bus, thereby providing an arrangement for the first rectifier and the second rectifier to simultaneously provide power to the single DC bus. A power balancer control receives power commands from both the first and the second ECMs and issues a corrective voltage adjustment to at least one of the first and second ECMs.
Abstract:
A system for hydraulically coupled multi-variator actuation is disclosed. One system includes: a first hydraulic variator comprising: a first hydraulic pump; and a first hydraulic motor linked to the first hydraulic pump. The system may further include a second hydraulic variator comprising: a second hydraulic pump; and a second hydraulic motor linked to the second hydraulic pump. The system may further include a first actuator linked to the first hydraulic pump and configured to control a displacement of the first hydraulic pump; a second actuator linked to the second hydraulic pump and configured to control a displacement of the second hydraulic pump; a hydraulic link connecting the first actuator and the second actuator, the hydraulic link configured to facilitate a coordinated operation of the first actuator and the second actuator; a valve disposed in fluid communication with the hydraulic link connecting the first actuator and the second actuator; and a controller connected to the valve and configured to control an operation of the valve to regulate hydraulic flow in the hydraulic link.
Abstract:
System and method for controlling a transmission in response to transient torque events are disclosed. The method includes commanding a maximum transmission output torque; comparing the commanded output torque to a feedback torque to determine if they are equal; and incrementally increasing the transmission output torque until equal. A machine and a powertrain include a controller configured to command a maximum negative transmission output torque in response to a transient torque event, and incrementally increase the transmission output torque until such time as the transmission output torque is equal to or within a preset range of the feedback torque.
Abstract:
System and method for controlling a transmission in response to transient torque events are disclosed. The method includes commanding a maximum transmission output torque; comparing the commanded output torque to a feedback torque to determine if they are equal; and incrementally increasing the transmission output torque until equal. A machine and a powertrain include a controller configured to command a maximum negative transmission output torque in response to a transient torque event, and incrementally increase the transmission output torque until such time as the transmission output torque is equal to or within a preset range of the feedback torque.
Abstract:
A system for hydraulically coupled multi-variator actuation is disclosed. One system includes: a first hydraulic variator comprising: a first hydraulic pump; and a first hydraulic motor linked to the first hydraulic pump. The system may further include a second hydraulic variator comprising: a second hydraulic pump; and a second hydraulic motor linked to the second hydraulic pump. The system may further include a first actuator linked to the first hydraulic pump and configured to control a displacement of the first hydraulic pump; a second actuator linked to the second hydraulic pump and configured to control a displacement of the second hydraulic pump; a hydraulic link connecting the first actuator and the second actuator, the hydraulic link configured to facilitate a coordinated operation of the first actuator and the second actuator; a valve disposed in fluid communication with the hydraulic link connecting the first actuator and the second actuator; and a controller connected to the valve and configured to control an operation of the valve to regulate hydraulic flow in the hydraulic link.
Abstract:
A system for mechanically coupled multi-variator actuation is disclosed. One system includes: a first hydraulic variator comprising: a first hydraulic pump; and a first hydraulic motor linked to the first hydraulic pump. The system may further include a second hydraulic variator comprising: a second hydraulic pump; and a second hydraulic motor linked to the second hydraulic pump. The system may further include a first actuator linked to the first hydraulic pump and configured to control a displacement of the first hydraulic pump; a second actuator linked to the second hydraulic pump and configured to control a displacement of the second hydraulic pump; and a mechanical link connecting the first actuator and the second actuator, the mechanical link configured to facilitate a coordinated operation of the first actuator and the second actuator.