Abstract:
A method is provided in one example embodiment and may include determining a location for a user equipment (UE); determining whether at least one user data plane entity servicing at least one packet data network (PDN) flow for the UE is to be changed based, at least in part, on the location of the UE; if at least one user data plane entity is to be changed, selecting at least one new user data plane entity to service the at least one PDN flow for the UE; allocating a new PDN Internet Protocol (IP) address for the at least one PDN flow for which the user data plane entity is changed; and communicating the new PDN IP address to the UE.
Abstract:
An example method is provided in one example embodiment and may include configuring paging parameters for a group of one or more user equipment (UE) based, at least in part, on a group identifier (ID) for the group of one or more UE; communicating the paging parameters to each of the one or more UE of the group; and paging one or more idle mode UE of the group according to the paging parameters to transition the idle mode UE to a connected mode for receiving a group message. In some instances, configuring the paging parameters can include configuring a paging frame and paging occasion for the group of one or more UE based on the group ID; configuring extended paging cycle radio frames for the group of one or more UE; and/or configuring a paging group Radio Network Temporary Identifier for the group of one or more UE.
Abstract:
In an example, there is disclosed a computing apparatus, having: a processor; a memory; a network interface to communicatively couple to a mobile data network; and an interconnection and routing function (IRF) server engine to: receive an incoming Control plane message from a source network function (NF) via the network interface; examine a header of the incoming Control plane message to determine a destination NF of the Control plane message; and route the Control plane message to the destination NF.
Abstract:
The present disclosure is directed at systems, methods and media for providing QoS differentiation between IP data flows by sorting data packets into bearers. If a first node in a communication network (e.g., a User Equipment or UE) determines that downlink packets received from a second node (e.g., a Packet Data Network Gateway or PDN-GW) via a specific bearer should be given reflective bearer treatment, the first node can be configured to send uplink packets back to the second node via the same bearer. By sending uplink traffic using the same bearer as downlink traffic, the first node can aid in ensuring that the correct QoS for the uplink traffic is used. Downlink packets or bearers can be configured to request reflective bearer treatment through reserved QoS Class Identifier (QCI) values, Allocation and Retention Priority (ARP) values, or through an indicator specifically defined for requesting such treatment.
Abstract:
An example method is provided in one example embodiment and may include determining that a user equipment (UE) is approximately stationary for a threshold period of time within a particular geographic area based, at least in part, on a radio access network (RAN) node to which the UE is attached; notifying the UE that the UE has been associated with the particular geographic area; and transitioning the UE into an idle mode from an active mode, wherein the transitioning is performed without notifying a core network that the UE has transitioned to the idle mode. Determining that the UE is approximately stationary can include monitoring mobility signaling from the UE and comparing an amount of time that the UE has been attached to the RAN node with a threshold period of time. The core network can be notified when the UE moves out of the particular geographic area.
Abstract:
An example method is provided in one example embodiment and may include communicating a message for a group of one or more user equipment (UE) from a machine type communication-interworking function (MTC-IWF) to a packet data network gateway (PGW), wherein the message includes a group identity (ID) associated with the group of one or more UE; communicating the message from the PGW to one or more serving gateways (SGWs); and communicating the message from each of the one or more SGWs to each of the one or more UE of the group of the one via a tunnel for each of the one or more UE.
Abstract:
An example method is provided in one example embodiment and may include determining that a user equipment (UE) is approximately stationary for a threshold period of time within a particular geographic area based, at least in part, on a radio access network (RAN) node to which the UE is attached; notifying the UE that the UE has been associated with the particular geographic area; and transitioning the UE into an idle mode from an active mode, wherein the transitioning is performed without notifying a core network that the UE has transitioned to the idle mode. Determining that the UE is approximately stationary can include monitoring mobility signaling from the UE and comparing an amount of time that the UE has been attached to the RAN node with a threshold period of time. The core network can be notified when the UE moves out of the particular geographic area.
Abstract:
A method is provided in one example embodiment and may include determining a location for a user equipment (UE); determining whether at least one user data plane entity servicing at least one packet data network (PDN) flow for the UE is to be changed based, at least in part, on the location of the UE; if at least one user data plane entity is to be changed, selecting at least one new user data plane entity to service the at least one PDN flow for the UE; allocating a new PDN Internet Protocol (IP) address for the at least one PDN flow for which the user data plane entity is changed; and communicating the new PDN IP address to the UE.
Abstract:
An example method is provided in one example embodiment and includes receiving, by a user equipment device, a list including at least one location identifier associated with an area for location reporting and an area identifier identifying the area for location reporting. The method further includes receiving a location identifier broadcast by a wireless network element, and determining whether the broadcast location identifier matches the at least one location identifier associated with the area for location reporting. The method further includes sending a location reporting message by the user equipment device to a first network node when it is determined that the broadcast location identifier matches the at least one location identifier associated with the area for location reporting. The location reporting message is indicative of the user equipment device either entering or exiting the area for location reporting.