Abstract:
An illustrative pseudo-file-system driver uses deduplication functionality and resources in a storage management system to provide an application and/or a virtual machine with access to a locally-stored file system. From the perspective of the application/virtual machine, the file system appears to be of virtually unlimited capacity. The pseudo-file-system driver instantiates the file system in primary storage, e.g., configured on a local disk. The application/virtual machine requires no configured settings or limits for the file system's storage capacity, and may thus treat the file system as “infinite.” The pseudo-file-system driver intercepts write requests and may use the deduplication infrastructure in the storage management system to offload excess data from local primary storage to deduplicated secondary storage, based on a deduplication database. The pseudo-file-system driver also intercepts read requests and in response may restore data from deduplicated secondary storage to primary storage, also based on the deduplication database.
Abstract:
Recovery points can be used for replicating a virtual machine and reverting the virtual machine to a different state. A filter driver can monitor and capture input/output commands between a virtual machine and a virtual machine disk. The captured input/output commands can be used to create a recovery point. The recovery point can be associated with a bitmap that may be used to identify data blocks that have been modified between two versions of the virtual machine. Using this bitmap, a virtual machine may be reverted or restored to a different state by replacing modified data blocks and without replacing the entire virtual machine disk.
Abstract:
An illustrative “Live Synchronization” feature creates and maintains a ready standby “synchronized application” that is available to take over as a failover solution for a “primary” application that operates in a production environment, but will do so on a different computing platform (e.g., physical server, virtual machine, container, etc.), and possibly on a differed kind of computing platform than, the primary. The illustrative system has specialized features and components for discovering and singling out each primary application and identifying and locating its disk image, e.g., VMDK file. The application is Live Synched to the standby/failover application without reference to whether and how other co-resident applications might be treated. The standby/failover destination supporting the synchronized application may be located anywhere, whether in the same data center as the primary or geographically remote or in a private or public cloud setting.
Abstract:
Systems and methods are provided which perform a file level restore by utilizing existing operating system components (e.g., file system drivers) that are natively installed on the target computing device. These components can be used to mount and/or interpret a secondary copy of the file system. For instance, the system can instantiate an interface object (e.g., a device node such as a pseudo device, device file or special file) on the target client which includes file system metadata corresponding to the backed up version of the file system. The interface provides a mechanism for the operating system to mount the secondary copy and perform file level access on the secondary copy, e.g., to restore one or more selected files.
Abstract:
An illustrative pseudo-file-system driver uses deduplication functionality and resources in a storage management system to provide an application and/or a virtual machine with access to a locally-stored file system. From the perspective of the application/virtual machine, the file system appears to be of virtually unlimited capacity. The pseudo-file-system driver instantiates the file system in primary storage, e.g., configured on a local disk. The application/virtual machine requires no configured settings or limits for the file system's storage capacity, and may thus treat the file system as “infinite.” The pseudo-file-system driver intercepts write requests and may use the deduplication infrastructure in the storage management system to offload excess data from local primary storage to deduplicated secondary storage, based on a deduplication database. The pseudo-file-system driver also intercepts read requests and in response may restore data from deduplicated secondary storage to primary storage, also based on the deduplication database.
Abstract:
The disclosed systems and methods enable an application to start operating and servicing users soon after and during the course of its backup data being restored, no matter how long the restore may take. This is referred to as “instant application recovery” in view of the fact that the application may be put back in service soon after the restore operation begins. Any primary data generated by the application during “instant application recovery” is not only retained, but is efficiently updated into restored data. An enhanced data agent and an associated pseudo-storage-device driver, which execute on the same client computing device as the application, enable the application to operate substantially concurrently with a full restore of backed up data. According to the illustrative embodiment, the pseudo-storage-device driver presents a pseudo-volume to the file system associated with the application, such that the pseudo-volume may be used as a store for primary data during the period of “instant application recovery.”
Abstract:
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination virtual machine. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination virtual machine is determined based at least in part on the configuration of the source physical computing device. The destination virtual machine is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.
Abstract:
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination virtual machine. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination virtual machine is determined based at least in part on the configuration of the source physical computing device. The destination virtual machine is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.
Abstract:
A data storage system protects virtual machines using block-level backup operations and restores the data at a file level. The system accesses the virtual machine file information from the file allocation table of the host system underlying the virtualization layer. A file index associates this virtual machine file information with the related protected blocks in a secondary storage device during the block-level backup. Using the file index, the system can identify the specific blocks in the secondary storage device associated with a selected restore file. As a result, file level granularity for restore operations is possible for virtual machine data protected by block-level backup operations without restoring more than the selected file blocks from the block-level backup data.
Abstract:
According to certain aspects, a system may include a data agent configured to: process a database file residing on a primary storage device(s) to identify a subset of data in the database file for archiving, the database file generated by a database application; and extract the subset of the data from the database file and store the subset of the data in an archive file on the primary storage device(s) as a plurality of blocks having a common size; and at least one secondary storage controller computer configured to, as part of a secondary copy operation in which the archive file is copied to a secondary storage device(s): copy the plurality of blocks to the secondary storage devices to create a secondary copy of the archive file; and create a table that provides a mapping between the copied plurality of blocks and corresponding locations in the secondary storage device(s).