Abstract:
A stent graft comprising an elongate main tubular body of a biocompatible graft material is disclosed. The main tubular body comprises a main lumen, a distal end and a proximal end; and an elongate tubular bridge of a biocompatible graft material. The elongate tubular bridge extends around a portion of the main tubular body so as to form a bridging lumen bridging between two circumferentially spaced-apart openings within the main tubular body. The tubular bridge has at least two fenestrations. The tubular bridge comprises concertinaed graft material.
Abstract:
A stent graft for placement in a lumen of a patient is disclosed. The stent graft comprises a main body including a main lumen and having a distal end terminating in a bifurcation. It also comprises first and second legs extending from the bifurcation, the first and second legs having respective first and second leg lumens and the first and second leg lumens being in fluid communication with the main lumen; and a side arm extending from the first leg, the side arm having a side arm lumen. The side arm lumen is in fluid communication with the first leg lumen at a position adjacent to the bifurcation. A combined lumen is formed. The combined lumen is between the main lumen and a distal portion of the first leg lumen and is bounded laterally by a portion of the side arm located adjacent to the bifurcation.
Abstract:
A temporary diameter reduction constraint arrangement for a stent graft is disclosed. The arrangement comprises: primary and secondary release wires extending along the graft; a plurality of loops of thread, each loop engaged with either the primary or secondary wire and engaged around a portion of the graft circumferentially spaced away from its release wire, and drawn tight to reduce the diameter of the graft; an end constraint arrangement comprising four of the plurality of loops of thread arranged into a first and second pairs engaged with respective primary and secondary wires; and an intermediate constraint arrangement comprising a fifth and sixth of the plurality of loops of thread arranged into a third pair, the third pair engaged with the primary release wire, the primary release wire deviating towards the secondary release wire so as to locate the intermediate constraint arrangement substantially in-line with the end constraint arrangement.
Abstract:
An endoluminal prosthesis includes a main tubular body having an external surface and defining a main lumen and at least one curved side tube having an internal portion disposed within the main lumen and an external portion extending along a curvilinear path on the external surface of the main tubular body. A portion of an expandable stent attached to the external surface of the main tubular body is disposed radially outward of and attached to the external portion of the curved side tube.
Abstract:
A temporary diameter reduction constraint arrangement for a stent graft in combination with a stent graft is disclosed. The stent graft has a proximal end and a distal end and comprises a biocompatible graft material tube and a plurality of longitudinally spaced apart self-expanding stents fastened thereto, including at least an end stent and a plurality of intermediate stents. The constraint arrangement comprises: an elongate receiver extending longitudinally within the graft material tube; a first wire extending longitudinally along the graft material tube in a first serpentine pattern; and a second wire extending longitudinally along the graft material tube in a second serpentine pattern, wherein at least one of the first and second wires repeatedly loops over the receiver along a longitudinal length of the stent graft thereby securing the stent graft to the receiver. In one embodiment there is also a plurality of loops of thread to reduce the stent graft.
Abstract:
A stent graft having an internal bidirectional branch formed from a tubular segment of graft material. The internal bidirectional branch extends within the lumen of the stent graft and proximally and distally from a lateral opening in the sidewall of the stent graft. The tubular segment from which the stent graft is made is partitioned into first and second sections along a length of the tubular segment to form the internal bidirectional branch. The lateral opening has a length and a width that may be greater than the diameter of the internal bidirectional branch and may be in the shape of a quadrilateral. The internal bidirectional branch and the stent graft are formed from a single piece of graft material.
Abstract:
A temporary diameter reduction constraint arrangement for a stent graft in combination with a stent graft is disclosed. The stent graft has a proximal end and a distal end and comprises a biocompatible graft material tube and a plurality of longitudinally spaced apart self-expanding stents fastened thereto, including at least an end stent and a plurality of intermediate stents. The constraint arrangement comprises: an elongate receiver extending longitudinally within the graft material tube; a first wire extending longitudinally along the graft material tube in a first serpentine pattern; and a second wire extending longitudinally along the graft material tube in a second serpentine pattern, wherein at least one of the first and second wires repeatedly loops over the receiver along a longitudinal length of the stent graft thereby securing the stent graft to the receiver. In one embodiment there is also a plurality of loops of thread to reduce the stent graft.
Abstract:
A stent graft comprising an elongate main tubular body of a biocompatible graft material is disclosed. The main tubular body comprises a main lumen, a distal end and a proximal end; and an elongate tubular bridge of a biocompatible graft material. The elongate tubular bridge extends around a portion of the main tubular body so as to form a bridging lumen bridging between two circumferentially spaced-apart openings within the main tubular body. The tubular bridge has at least two fenestrations. The tubular bridge comprises concertinaed graft material.
Abstract:
A temporary diameter reduction constraint arrangement for a stent graft is disclosed. The arrangement comprises: primary and secondary release wires extending along the graft; a plurality of loops of thread, each loop engaged with either the primary or secondary wire and engaged around a portion of the graft circumferentially spaced away from its release wire, and drawn tight to reduce the diameter of the graft; an end constraint arrangement comprising four of the plurality of loops of thread arranged into a first and second pairs engaged with respective primary and secondary wires; and an intermediate constraint arrangement comprising a fifth and sixth of the plurality of loops of thread arranged into a third pair, the third pair engaged with the primary release wire, the primary release wire deviating towards the secondary release wire so as to locate the intermediate constraint arrangement substantially in-line with the end constraint arrangement.
Abstract:
A temporary diameter reduction constraint arrangement for a stent graft in combination with a stent graft is disclosed. The stent graft has a proximal end and a distal end and comprises a biocompatible graft material tube and a plurality of longitudinally spaced apart self-expanding stents fastened thereto, including at least an end stent and a plurality of intermediate stents. The constraint arrangement comprises: an elongate receiver extending longitudinally within the graft material tube; a first wire extending longitudinally along the graft material tube in a first serpentine pattern; and a second wire extending longitudinally along the graft material tube in a second serpentine pattern, wherein at least one of the first and second wires repeatedly loops over the receiver along a longitudinal length of the stent graft thereby securing the stent graft to the receiver. In one embodiment there is also a plurality of loops of thread to reduce the stent graft.