Abstract:
An overcurrent protection device for a power supply device includes a receiving end for receiving a current sensing signal, a compensating current unit coupled to the receiving end for compensating the current sensing signal in order to generate a current sense compensation signal, a first reference voltage generator for generating a first reference voltage, a comparator coupled between the compensating current unit and the first reference voltage generator for comparing the current sense compensation signal with the first reference voltage in order to generate a comparison result, a control unit coupled to the comparator for controlling a power switch of the power supply device according to the comparison result.
Abstract:
A primary-side feedback control device for a power converter includes a control unit for generating a pulse signal according to a feedback signal for controlling on and off states of a switching transistor of the power converter, a comparator coupled to an auxiliary winding of a primary side of the power converter for generating at least one control signal according to a voltage on the auxiliary winding and a reference voltage, a sample-and-hold unit coupled to the auxiliary winding, the comparator, and the control unit for generating the feedback signal according to the voltage on the auxiliary winding and the at least one control signal, and a voltage generator coupled to the control unit, the comparator, and the sample-and-hold unit for generating the reference voltage according to the feedback signal.
Abstract:
An audio playback positioning method. A processor retrieves audio data from a memory, divides a progress bar showing playback time of the audio data into segments, utilizes a length of a progress bar segment as a unit to perform playback skipping on the audio data, and retrieves an audio data segment through the skipping. The processor further divides a progress bar segment corresponding to the retrieved audio data segment into sub-segments in response to input operations, and utilizes the length of a sub-segment as a unit to perform playback skipping on the retrieved audio data segment to retrieve and perform playback operation on a target position thereon.
Abstract:
A current-level controlling device for a power supply includes a reception end for receiving a current sense signal, a reference voltage generator for generating a reference voltage, an adaptive reference voltage generator, coupled to the reference voltage generator and the reception end, for adjusting the reference voltage according to variation of peak values of the current sense signal, so as to generate an adaptive reference voltage, a comparator, coupled to the reception end and the adaptive reference voltage generator, for comparing the current sense signal and the adaptive reference voltage, to generate a comparison result, and a control unit, coupled to the comparator, for controlling a switch transistor of the power supply according to the comparison result.
Abstract:
The present invention discloses a minimum on-time reduction method for a switching power conversion, comprising the steps of: generating a first reset signal and an over-supply pulse signal according to a current sensing signal and a reference signal; generating a blanking signal according to a count number of the over-supply pulse signal; and generating a second reset signal by performing Logic-AND operation on the first reset signal and the blanking signal. Furthermore, the present invention also provides a minimum on-time reduction apparatus for a power conversion, and a system using the minimum on-time reduction apparatus for a power conversion.
Abstract:
A light source driver circuit includes a voltage input terminal, a light source module, a transformer module, a voltage regulator module, a first switch and a control module. The voltage input terminal receives an input voltage. The light source module includes a plurality of light-emitting units. The transformer module is electrically connected to the light-emitting units. The voltage regulator module connected to the voltage input terminal provides a stable output voltage. The first switch electrically connected to the transformer module and the voltage regulator module receives the stable output voltage to determine whether the first switch is to be turned on or off. The control module is electrically connected to the first switch. The control module and the first switch are controlled so that the light source module the input voltage can be drived by the input voltage.
Abstract:
An overcurrent protection device for a power supply device includes a receiving end for receiving a current sensing signal, a compensating current unit coupled to the receiving end for compensating the current sensing signal in order to generate a current sense compensation signal, a first reference voltage generator for generating a first reference voltage, a comparator coupled between the compensating current unit and the first reference voltage generator for comparing the current sense compensation signal with the first reference voltage in order to generate a comparison result, a control unit coupled to the comparator for controlling a power switch of the power supply device according to the comparison result.
Abstract:
A pulse width modulation controller with frequency jitter functionality includes an oscillator and a threshold voltage generator. The oscillator is utilized for generating a switching frequency signal according to an upper threshold voltage and a lower threshold voltage. The threshold voltage generator is coupled to the oscillator, and is utilized for generating the upper threshold voltage and the lower threshold voltage and modulating at least one of the upper threshold voltage and the lower threshold voltage to vary over time for jittering the switching frequency signal.
Abstract:
The present invention discloses a constant-current charge pump, wherein a current detection circuit and a regulation circuit are arranged in the output of a pump circuit and used to control the current output by the pump circuit. When the load varies, the current variation is detected, and the regulation circuit pumps and regulates the current output by the pump circuit to stabilize the output current. Thereby, the output current will vary very slightly for different loads and input voltages.