Abstract:
The application is directed to a system operationally configured to assist individuals with performing one or more activities including, but not necessarily limited to moving from one location to another, showering, using a mirror, using a sink, bathing, using a toilet, performing one or more leisure activities, and combinations thereof. In one aspect, the system may include an assembly and transport member connected thereto, the assembly including a bed and/or bath and/or toilet and/or personal item storage system and/or entertainment system integrated with one or both of smart and manual processes operationally configured to assist individuals with performing one or more activities.
Abstract:
A three-dimensional connector, which is used by a coordinate input device of a touch pad has a flat conductor cable with an end being connected to the touch pad and another end having multiple conductive lines. Each of the conductive lines is attached with a vertical guiding conductor pin. The guide conductor pin has a head section to press-fit with the flat conductor cable, and extends through a support to transmit electronic signals in a direction perpendicular to said flat conductor cable.
Abstract:
An optical disk drive includes an optical disk drive controller that can test the write channels between the controller and the laser diode driver. Using the results of this testing, the optical disk drive controller adjusts the characteristics of the write channel signals provided to the laser diode driver to correct for one or more detected imperfections in the write channel signals. Both the optical disk drive controller and the laser diode driver have communications ports to facilitate communication. The optical disk drive controller programs the operating characteristics of the laser diode driver so that the laser diode driver can be optimized for the measured characteristics of the write channels.
Abstract:
An aligned write signal generator with alignment calibration utilizes an alignment unit to align a plurality of write signal. The aligned write signal generator includes a write signal generator for receiving an EFM signal and converting the EFM signal into a plurality of write signals according to a write strategy waveform generating rule, an alignment unit for receiving the plurality of write signals, aligning the write signals and outputting phase adjusted write signals, and a phase calibration unit for receiving the phase adjusted write signals, detecting phase error between the phase adjusted write signals, and outputting phase control signals. The alignment unit further receives the phase control signals to adjust the delay time of each write signal.
Abstract:
An aligned write signal generator with alignment calibration utilizes an alignment unit to align a plurality of write signal. The aligned write signal generator includes a write signal generator for receiving an EFM signal and converting the EFM signal into a plurality of write signals according to a write strategy waveform generating rule, an alignment unit for receiving the plurality of write signals, aligning the write signals and outputting phase adjusted write signals, and a phase calibration unit for receiving the phase adjusted write signals, detecting phase error between the phase adjusted write signals, and outputting phase control signals. The alignment unit further receives the phase control signals to adjust the delay time of each write signal.
Abstract:
A data slicer includes a comparator coupled with an input signal and a reference signal for generating a sliced signal, a waveform generator for generating a calibration signal, a pulse extension device coupled to the comparator and the waveform generator for modifying the duty cycle of the sliced signal or the calibration signal to output, a charge pump coupled between the pulse extension device and a first node for charging and discharging the first node according to the signal output from the pulse extension device, a determining circuit for adjusting the data slicer according to the level change at the first node, and a feedback device coupled between the first node and the comparator for generating the reference signal.
Abstract:
A peak detection circuit with double peak detection stages includes an analog peak detector, an analog-to-digital converter (ADC), and a digital peak detector. The analog peak detector receives an analog input signal, detects a peak value of the analog input signal with a first period, and outputs an analog peak signal. The ADC receives the analog peak signal and converts it into a digital signal. The digital peak detector receives the digital signal, detects the peak value of the digital signal with a second period longer than the first period, and outputs a digital peak signal. Therefore, the analog peak signal will not decay seriously due to the leakage and the digital peak signal can hold the digital peak value for a long time.
Abstract:
The present invention with an optical disk drive controller and an optical pickup head connected together by a flexible cable is described. The device includes a delay adjusting module located within the first module for delaying a first signal by an amount specified by a calibration signal. The first module transmits the delayed first signal and a second signal through a first signal channel and a second signal channel, respectively, to the second module of the optical pickup head, a monitoring module located within the optical pickup head for receiving and reshaping the delayed first signal and the second signal so as to generate a monitor signal. A calibration signal-generating module is located within the optical disk drive controller for receiving the monitor signal so as to generate the calibration signal.
Abstract:
A phase locked loop (PLL) with low steady state phase errors utilizes a delay unit to delay an input signal or a reference clock so as to lower the steady state phase errors of the PLL. A calibration circuit is used to adjust the delay time of the delay unit and includes a signal generator for generating a simulation input signal and a simulation reference clock according to a phase locked clock; a delay unit for delaying the simulation reference clock and generating a delayed reference clock; a phase detector for detecting the phase error between the simulation input signal and the delayed reference clock and generating charge control signals; a charge pump and an integrator for generating an error voltage according to the charge control signals; a delay time control unit for adjusting the delay time of the delay unit according to the error voltage; and a voltage control oscillator for generating the oscillation clock according to a reference control voltage.
Abstract:
A signal calibration apparatus of a charge pump minimizes a current from the charge pump. The signal calibration apparatus includes a detecting circuit, a current adjusting circuit, and a calibrating circuit, wherein the detecting circuit is coupled to the charge pump for outputting a detecting signal according to the direction and magnitude of the current, the current adjusting circuit is coupled to the detecting circuit for outputting a calibrating signal according to the polarity and magnitude of the slew rate for the detection signal; and the calibrating circuit, which consists of a first calibration current source and a second calibration current source, is respectively coupled to the charge pump and the current adjusting circuit for adjusting the first current and the second current by outputting a first calibrating current and second calibrating current to the charge pump.