Single-drive bidirectional-crawling pipe-cleaning robot

    公开(公告)号:US10981203B2

    公开(公告)日:2021-04-20

    申请号:US16076685

    申请日:2017-11-13

    Abstract: The present invention discloses a single-drive bidirectional-crawling pipe-cleaning robot, including a front body assembly, a transmission assembly, and a rear body assembly. The transmission assembly is driven by a single power source, and a transmission effect of a connecting rod mechanism, a gear mechanism, and an equal-dwell cam mechanism is used to implement alternate retraction and support of the front body assembly and the rear body assembly in a radial direction and a telescopic motion in an axial direction between the front body assembly and the rear body assembly and at the same time implement synchronous rotation of a dredging cutter head, so as to implement bidirectional crawling and pipe cleaning work of the robot along a pipe. The present invention is stable, reliable, compact, and practical, and implements single-drive bidirectional crawling and pipe cleaning in a pipe having a greatly changing pipe diameter, so that the obstacle negotiation performance and adaptability to pipe diameter changes of an in-pipe robot are effectively improved, the endurance of the in-pipe robot is improved, and practical engineering significance in cleaning of a horizontal pipe having a greatly changing pipe diameter is provided.

    Shock-absorbing and energy-collecting roller cage shoe

    公开(公告)号:US10301150B2

    公开(公告)日:2019-05-28

    申请号:US15547517

    申请日:2016-12-07

    Abstract: A shock-absorbing and energy-collecting roller cage shoe including a base, a main energy-collecting module, two auxiliary energy-collecting modules, and a roller is provided. The base is provided with three containing spaces for containing the main energy-collecting module and the two auxiliary energy-collecting modules. In the three containing spaces, the main energy-collecting module and the two auxiliary energy-collecting modules are respectively connected fixedly to the base through wire rope shock absorbers, the main energy-collecting module and the two auxiliary energy-collecting modules are respectively pressed on the left side, the upper side and the lower side of the roller, and the right side of the roller is pressed on a cage guide. The energy-collecting modules collect vibrational energy generated by vibration in the operation process of a lifting container, and convert the vibrational energy into collectable piezoelectric energy. The piezoelectric energy can be used to supply electric energy to electricity-consuming installations, such as such as the illumination of the lifting container, and thereby the collection and utilization of energy are realized.

Patent Agency Ranking