Abstract:
The current MBOA UWB MAC protocol requires a device that detects alien devices to include a BP Switch IE in its beacon so that its neighbors may learn the presence of the alien devices and follow that device to relocate their beacons in a coordinated fashion. However, during the transition period of beacon relocation, that device may decide to halt the relocation process as required by the standard and such decisions also have to be received by its neighbors. In such a case, a BP switch IE will be generated by that device which includes a BPST offset equal to a length of a superframe.
Abstract:
A Single Carrier Block Transmission (SCBT) system employs an inherently parallel approach to error correction processing. At the transmission system (200), an incoming data stream is split (210) into P parallel data streams, each having a data rate equal to a fraction of the incoming data stream's data rate. The parallel data streams are then each separately encoded (220) in P parallel encoding processes (beneficially, using P parallel encoders (222)). The P separately encoded data streams are then merged (330), interleaved (320), and mapped (310) into a single stream of encoded symbols, which are transmitted to the receiver using an arbitrary modulation (240) and transmission scheme. At the receiver (255), the received data stream is de-interleaved (350) and split into P encoded data streams, which are then decoded (285) using P parallel decoders. Then, the decoded data streams are combined or multiplexed (295) into a single data stream.
Abstract:
A wireless device (100) communicates in a wireless system by selecting a communication channel (202) for communication, identifying a control channel or control channels (204) designated for communication of control information for the selected communication channel, and listening for the control information (212) on the control channel to determine if the selected communication channel is bonded with any other communication channel. When control information is received via the control channel(s) indicating that the selected communication channel is bonded with at least one other communication channel, then the wireless device abstains from communication on the selected communication channel, or communicates in a narrowband mode. When control information is received via the control channel(s) indicating that the selected communication channel is not bonded with another communication channel, or when no control information is received via the control channel, then the wireless device communicates via the selected communication channel.
Abstract:
A method (200) for enabling compatibility of wireless devices having different regulation settings. The method includes upon initialization of a wireless device, scanning a predefined common channel (S220); forming a WiNet service set (WSS) by wireless devices communicating over the predefined common channel (S230); upon switching of the wireless devices in the WSS to a channel other than the predefined common channel, checking if a new wireless device attempts to join the WSS (S240, S250); and adding the new wireless device to the WSS if such attempt was detected (S290).
Abstract:
A communication system includes first and second devices, where a processor of at least one of the first device and the second device is configured to establish a superframe having a superframe duration (Ts) and transmit a beacon by the first device during each of the superframe duration (Ts); scan by the second device all sectors (Nbeam) by scanning each sector for a superframe duration (Ts) and repeating a jump sequence. The jump sequence has a sequence duration (Ttotal) which is equal to a sum of a control duration (Tc) of a control channel and durations of data channels (KTd). The processor is further configured to find the first device by the second device during a find time (Tf), where the control duration (Tc) is greater than the durations of data channels (KTd).
Abstract:
In a communication network (100), a method (400) of reserving X slots (610) for transmitting data from a source device (110A) to a destination device (110D) via multi-hop relay includes sending a first hop reservation request from the source device (110A) to a second device (110), for transmitting data from the source device to the destination device. The first hop reservation request identifies the source device, the destination device, and X proposed slots (610) to be reserved for the first hop. The source device then receives a first message, addressed to the source device from the second device, indicating that the first hop reservation request is pending and that the X slots proposed by the source device have been reserved by the second device. Later, the source device receives a subsequent message indicating whether a final hop reservation request has been accepted by the destination device.
Abstract:
A transparent conductive film and a fabrication method thereof are provided. The transparent conductive film includes a plurality of oxide atomic layers, containing a plurality of multi-oxide atomic layers, wherein a single multi-oxide atomic layer has more than one kind of uniformly mixed oxide. The method includes providing more than one kind of oxide precursor which is individually introduced into atomic layer deposition equipment through different sources, wherein the oxide precursors are consecutively introduced into the atomic layer deposition equipment, so that the oxide precursors are simultaneously present in the atomic layer deposition equipment, forming a uniform mixture for settling onto the substrate. Then, an oxidant is provided to react with the oxide precursors to form a single multi-oxide atomic layer. The above mentioned steps are repeated to form a plurality of multi-oxide atomic layers.
Abstract:
A wireless device (A) in a first antenna sector (40) is discovered using a directional antenna (322), which sends and receives signals in multiple antenna sectors. Multiple primary beacons are transmitted in corresponding primary beacon time slots (1P-4P), which correspond to the antenna sectors (10-40) and have associated secondary beacon time slots (1s-4s). A secondary beacon is received from the wireless device in a first secondary beacon time slot (4sA) associated with a first primary beacon time slot (4P) corresponding to the first sector, the secondary beacon being responsive to a first primary beacon included in the first primary beacon time slot. An additional first secondary beacon time slot (4s) is added in association with the first primary beacon time slot. The additional first secondary beacon time slot enables an additional wireless device in the first sector to send an additional secondary beacon in response to a subsequent first primary beacon included in the first primary beacon time slot.
Abstract:
The present invention provides a system (600), device (500) and method (400) for automatic partner selection in an existing Cooperative MAC (CMAC) protocol, which uses the Ready-to-Send (RTS), Clear-to-Send (CTS) and Partner-Clear-to-Send (PCTS) handshaking to establish cooperation. The present invention enables a “best” partner/relay (500.R.k) who is also willing to cooperate to relay information to a destination (500.D.J) for the transmitting device (i.e., the source), without the source (500.S.i) making a decision on partner selection. That is, the present invention provides a new mechanism by which the best partner/relay (500.R.k) that is also willing to cooperate will “step in” automatically without the source's involvement in selection of the partner/relay (500.R.k). This mechanism is contention-based and the partner is “selected” using local information only in a fully distributed manner.
Abstract:
Under the present invention, a wireless component such as an access point or a mobile device is configured to manage the buffering of newly transmitted TCP packets. Specifically, the wireless component can receive both forwarded TCP packets and newly transmitted TCP packets. If a set of newly transmitted TCP packets is received out of order(i.e., before a set of previously transmitted TCP packets that must be forwarded), one out of order (newly transmitted) TCP packet will be passed for each of a quantity of tokens present on the wirelesss component. Each out of order TCP packet that is not passed will be buffered. Once a previously requested forwarded TCP packet is received and passed, the quantity of tokens is restiored to a predetermined quantity, and a commensurate number of buffered TCP packets can be passed.