Abstract:
An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
Abstract:
Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
Abstract:
An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
Abstract:
Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
Abstract:
An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.