Abstract:
A tracking control apparatus for tracking a preceding vehicle includes information acquiring unit for acquiring information about surrounding the own vehicle, preceding vehicle determining unit for determining the preceding vehicle running ahead of the own vehicle, control unit controls the tracking control to be maintained or released, and turn signal determining unit for determining whether or not a turn signal of a turn signal unit of the preceding vehicle is active. The control unit maintains or releases the tracking control by determining the surrounding of the own vehicle concerning a traffic lane change by the preceding vehicle based on the information acquired by the information acquiring unit, when the turn signal determining unit determines that the turn signal of the turn signal unit is active.
Abstract:
A vehicle controller includes a follow travel instructor conducting a lead vehicle follow control by auto-steering for a following of an own vehicle to follow a lead vehicle, an other vehicle information obtainer obtaining transmitted information transmitted from the lead vehicle, the transmitted information including information regarding a front situation of the lead vehicle, and an across-boundary move determiner determining whether the lead vehicle may cross a traffic lane boundary to an opposite traffic lane, based on the front situation information of the lead vehicle obtained by the other vehicle information obtainer. The follow travel instructor stops conducting the lead vehicle follow control based on a determination by the across-boundary move determiner that the lead vehicle may cross the traffic lane boundary. In such manner, an occupant of the own vehicle is prevented from becoming frightened by the auto-steering.
Abstract:
A selection track setting section in a driving route generation device determines as a selected track a track of a preceding vehicle when a detection section and a track generation section detects a track of the preceding vehicle which is running on the same driving lane of a host vehicle. A candidate track selection section outputs as a candidate track one of tracks of front vehicles, detected by the detection section and the track generation section, other than the track of the preceding vehicle. A switching selection section switches as the selected track from the track of the preceding vehicle to the candidate track when a detection of the track of the preceding vehicle is interrupted during a predetermined detection period. An estimate route generation section generates an estimated driving route of the host vehicle on the bass of the selected track.
Abstract:
A driving control apparatus mounted on a present vehicle used for tracking a preceding vehicle includes: control module for controlling the present vehicle to accelerate or decelerate; vehicle detecting module for detecting the preceding vehicle; region detecting module for detecting a lateral region existing on an adjacent lane being adjacent to a present lane where the present vehicle exists, the lateral region being laterally to the present vehicle; and region determining module for determining whether or not the lateral region is an avoidance region that has a predetermined area.The control module performs an avoidance standby operation that allows the present vehicle to accelerate or decelerate based on a result of determining by the region determining module, when the vehicle detecting module detects the preceding vehicle existing on the present lane.
Abstract:
A vehicle control apparatus that for automatic steering control that reduces occupant discomfort and stress is provided. A lane width of a subject lane and a current in-lane ratio are detected. If an off-lane obstacle which may place stress on the occupant is present within a prescribed area, a relative position between each off-lane obstacle and the vehicle is determined. A target in-lane ratio is determined based on the relative position. Specifically, when the off-lane obstacles are present on both the left and right sides of the subject lane, the target in-lane ratio is such that lateral distances to both off-lane obstacles are equal. When the off-lane obstacle is present on only one of either the left or right of the subject lane, the target in-lane ratio is set such that a lateral position away from the off-lane obstacle by a lateral distance set in advance is the target lateral position.
Abstract:
When a travel path is to be generated for a vehicle, road surface lines (white lines, etc.) delimiting the traffic lane of the vehicle, and also external objects in the vehicle environment, are detected and registered as respective obstacles. Specific points are defined at appropriate locations on each obstacle, and the travel path is generated by connecting respective mid-point positions between opposed pairs of specific points, each pair defined on respective ones of an opposed (left-side, right-side) pair of the registered obstacles.
Abstract:
In a vehicle travel assisting device, a vehicle speed, a yaw rate, a traveling lane of an own vehicle, and a position of a leading vehicle are detected. Target travel coordinates of the own vehicle are calculated, based on the traveling lane and the position of the leading vehicle A travel path curvature of a target travel coordinate group is estimated, based on information related to the target travel coordinate group. A steering quantity to be steered in advance by the own vehicle is calculated, based on the currently estimated travel path curvature. A weight for each of the target travel coordinates for estimating the travel path curvature is adjusted based on the vehicle speed, the yaw rate and the previously estimated travel path curvature. Steering control is performed such that the own vehicle travels so as to follow the estimated travel path curvature, based on the calculated steering quantity.
Abstract:
In a vehicle control device, a basic steering amount calculation section calculates a basic steering amount to drive an own vehicle on a basic route along a driving lave. A posture detection section detects a vehicle posture state indicated by a lateral position and an angle of yaw. An offset distance detection section detects an offset distance between the basis route and the lateral position. A correction steering amount calculation section calculates a correction steering amount as a steering control amount to drive the own vehicle along a virtual correction route. The posture of the own vehicle is alien with a predetermined target posture at a predetermined virtual target point by using the virtual correction route. An instruction steering amount calculation section calculates an instruction steering amount on the basis of the basic steering amount and the correction steering amount.
Abstract:
A vehicle control apparatus that for automatic steering control that reduces occupant discomfort and stress is provided. A lane width of a subject lane and a current in-lane ratio are detected. If an off-lane obstacle which may place stress on the occupant is present within a prescribed area, a relative position between each off-lane obstacle and the vehicle is determined. A target in-lane ratio is determined based on the relative position. Specifically, when the off-lane obstacles are present on both the left and right sides of the subject lane, the target in-lane ratio is such that lateral distances to both off-lane obstacles are equal. When the off-lane obstacle is present on only one of either the left or right of the subject lane, the target in-lane ratio is set such that a lateral position away from the off-lane obstacle by a lateral distance set in advance is the target lateral position.
Abstract:
When a travel path is to be generated for a vehicle, road surface lines (white lines, etc.) delimiting the traffic lane of the vehicle, and also external objects in the vehicle environment, are detected and registered as respective obstacles. Specific points are defined at appropriate locations on each obstacle, and the travel path is generated by connecting respective mid-point positions between opposed pairs of specific points, each pair defined on respective ones of an opposed (left-side, right-side) pair of the registered obstacles.