SEPARATION OF GASES VIA CARBONIZED VINYLIDENE CHLORIDE COPOLYMER GAS SEPARATION MEMBRANES AND PROCESSES THEREFOR

    公开(公告)号:US20190076793A1

    公开(公告)日:2019-03-14

    申请号:US16085038

    申请日:2017-03-14

    Abstract: A process for separating hydrogen from a gas mixture having hydrogen and a larger gas molecule is comprised of flowing the gas mixture through a carbonized polyvinylidene chloride (PVDC) copolymer membrane having a hydrogen permeance in combination with a hydrogen/methane selectivity, wherein the combination of hydrogen permeance and hydrogen/methane selectivity is (i) at least 30 GPU hydrogen permeance and at least 200 hydrogen/methane selectivity or (ii) at least 10 GPU hydrogen permeance and at least 700 hydrogen/methane selectivity. The carbonized PVDC copolymer may be made by heating and restraining a polyvinylidene chloride copolymer film or hollow fiber having a thickness of 1 micrometer to 250 micrometers to a pretreatment temperature of 100° C. to 180° C. to form a pretreated polyvinylidene chloride copolymer film and then heating and restraining the pretreated polyvinylidene chloride copolymer film to a maximum pyrolysis temperature from 350° C. to 750° C.

    Vinylidene chloride copolymer-based carbon molecular sieve adsorbent compositions and processes therefor

    公开(公告)号:US10239043B2

    公开(公告)日:2019-03-26

    申请号:US15320334

    申请日:2015-06-22

    Abstract: Novel carbon molecular sieve (CMS) compositions comprising carbonized vinylidene chloride copolymer having micropores with an average micropore size ranging from 3.0 to 5.0. These materials offer capability in separations of gas mixtures including, for example, propane/propylene; nitrogen/methane; and ethane/ethylene. Such may be prepared by a process wherein vinylidene chloride copolymer beads, melt extruded film or fiber are pretreated to form a precursor that is finally carbonized at high temperature. Preselection or knowledge of precursor crystallinity and attained maximum pyrolysis temperature enables preselection or knowledge of a average micropore size, according to the equation ?=6.09+(0.0275×C)−(0.00233×T), wherein ? is the average micropore size in Angstroms, C is the crystallinity percentage and T is the attained maximum pyrolysis temperature in degrees Celsius, provided that crystallinity percentage ranges from 25 to 75 and temperature in degrees Celsius ranges from 800 to 1700. The beads, fibers or film may be ground, post-pyrolysis, and combined with a non-coating binder to form extruded pellets, or alternatively the fibers may be woven, either before or after pre-treatment, to form a woven fiber sheet which is thereafter pyrolyzed to form a woven fiber adsorbent.

    Carbon Molecular Sieve Adsorbents Prepared From Activated Carbon and Useful For Propylene-Propane Separation

    公开(公告)号:US20180280927A1

    公开(公告)日:2018-10-04

    申请号:US15764633

    申请日:2016-09-30

    Abstract: A process to prepare a carbon molecular sieve adsorbent composition comprises steps beginning with an activated carbon having specific effective micropore size. The activated carbon is impregnated with monomers or partially polymerized polymer, allowed to complete polymerization, and then carbonized such that the impregnant shrinks the micropores to another specific effective micropore size. Finally, the impregnated/polymerized/carbonized product is annealed at a temperature ranging from 1000° C. to 1500° C., which ultimately and predictably shrinks the micropores to a size ranging from 4.0 Angstroms to 4.3 Angstroms. The invention surprisingly enables fine tuning of the effective micropore size, as well as desirable selectivity, capacity and adsorption rates, to obtain highly desirable carbon molecular sieving capability particularly suited for use in, for example, fixed beds in pressure swing or temperature swing processes to enable propylene/propane separations.

Patent Agency Ranking