Abstract:
The present disclosure provides a device. In an embodiment, a device for dispensing a fluid under pressure is provided and includes: (A) a flexible container comprising four panels, each panel formed from a flexible multilayer film composed of one or more polymeric materials, the four panels forming (i) a body, and (ii) a neck; (B) a fitment comprising a top portion and a base, the base composed of a polymeric material, the base sealed in the neck; (C) a sleeve bag on valve assembly (SBoV) comprising (i) a valve housing, (ii) a core tube attached to the valve housing, (iii) a bag around the core tube, the bag attached to the valve housing, (iv) a sleeve surrounding the bag and the core tube, and (v) a valve seat; (D) the SBoV inserted through the fitment and located in the body; and (E) the valve seat attached to the fitment.
Abstract:
Disclosed are multilayer film structures comprising a layer (B) that comprises a crystalline block copolymer composite (CBC) or a specified block copolymer composite (BC), comprising i) an ethylene polymer (EP) comprising at least 80 mol % polymerized ethylene; ii) an alpha-olefin-based crystalline polymer (CAOP) and iii) a block copolymer comprising (a) an ethylene polymer block comprising at least 80 mol % polymerized ethylene and (b) a crystalline alpha-olefin block (CAOB); and a layer C that comprises a polyolefin having at least one melting peak greater than 1255 C, the top facial surface of layer C in adhering contact with the bottom facial surface of layer B. Such multilayer film structure preferably comprises (A) a seal layer A having a bottom facial surface in adhering contact with the top facial surface of layer B. Such films are suited for use in electronic device (ED) modules comprising an electronic device such as a PV cell. Also disclosed is a lamination process to construct a laminated PV module comprising such multilayer film structures.
Abstract:
A composition for odor control includes (A) from 85 wt % to 99.5 wt % of an olefin-based compound and (B) from 15 wt % to 0.5 wt % of an odor suppressant. The odor suppressant includes a blend of (i) an ionomer, (ii) particles of zinc oxide, and (iii) particles of copper oxide. The composition has a methyl mercaptan odor suppression value of greater than 45% as measured in accordance with ASTM D5504-12.
Abstract:
The present disclosure provides a composition. In an embodiment, the composition includes (A) from 85 wt % to 99 wt % of an olefin-based polymer and (B) from 15 wt % to 1 wt % of an odor suppressant. The odor suppressant is a blend of (i) particles of zinc oxide, and (ii) zinc ionomer. The zinc oxide particles have a D50 particle size from 100 nm to 3000 nm, a surface area from 1 m2/g to 9 m2/g, and a porosity less than 0.020 m3/g. The composition has a methyl mercaptan odor suppression value of less than 70 at 3 days as measured in accordance with ASTM D5504-12.
Abstract:
The present disclosure provides a dispenser for pressurized material. In an embodiment, the dispenser for pressurized material includes a container half having an exposed edge and a closure member at the exposed edge. The container half has a cup half in an interior top portion. The dispenser includes a reciprocal container half having a reciprocal exposed edge and a reciprocal closure member at the reciprocal exposed edge. The reciprocal container half has a reciprocal cup half in an interior top portion. The closure member and the reciprocal closure member matingly engage along the exposed edges to attach the container half to the reciprocal container half and form a container. The dispenser includes a sleeve bag on valve (SBoV) assembly in an interior of the container. The SBoV assembly includes a valve seat. The cup and the reciprocal cup support the valve seat to secure the SBoV assembly in the container.
Abstract:
The present disclosure provides a container and a process for producing the container. In an embodiment, the process includes placing a sleeve bag on valve assembly (SBoV) in a blow mold apparatus. The blow mold apparatus has two opposing and movable molds. The SBoV has a valve seat. The process includes extending a parison of flowable polymeric material around the SBoV and between the opposing molds. The process includes moving the opposing molds to a closed position and pressing an upstream portion of the parison against the valve seat. The process includes blow molding a downstream portion of the parison into a container-shape within the closed mold. The process includes forming a container with the valve seat melt bonded to a neck portion of the container.
Abstract:
The present disclosure provides a flexible container. In an embodiment, the flexible container includes a front panel, a rear panel, a first gusset side panel, and a second gusset side panel. The gusset side panels adjoin the front panel and the rear panel along (i) peripheral seals to form a chamber, and (ii) handle seals to form a handle, the handle located at an end of the chamber. The flexible container includes a tube member sealed to the flexible container. The tube member is in fluid communication with the chamber. The tube member comprises an ethylene/α-olefin multi-block copolymer.
Abstract:
The present disclosure provides a fiber and fabrics made therefrom. In an embodiment, a fiber is provided and includes an odor control composition. The odor control composition includes (A) from 85 wt % to 99.5 wt % of an olefin-based polymer and (B) from 15 wt % to 0.5 wt % of an odor suppressant. The odor suppressant includes: (i) an ionomer, (ii) particles of zinc oxide, and (iii) particles of copper oxide.
Abstract:
The present disclosure provides a composition. In an embodiment, the composition includes (A) from 85 wt % to 99 wt % of an olefin-based polymer and (B) from 15 wt % to 1 wt % of an odor suppressant. The odor suppressant is a blend of (i) particles of zinc oxide, and (ii) zinc ionomer. The zinc oxide particles have a D50 particle size from 100 nm to 3000 nm, a surface area from 1 m2/g to 9 m2/g, and a porosity less than 0.020 m3/g. The composition has a methyl mercaptan odor suppression value of less than 70 at 3 days as measured in accordance with ASTM D5504-12.
Abstract:
The present disclosure provides a flexible container. In an embodiment, the flexible container include (A) a front panel, a rear panel, a first gusseted side panel, and a second gusseted side panel. The gusseted side panels adjoin the front panel and the rear panel along peripheral seals to from a chamber. (B) Each peripheral seal has (i) an arcuate body seal inner edge (ABSIE) with opposing ends, (ii) a tapered seal inner edge (TSIE) extending from each end of the body seal. (C) The flexible container includes at least one ABSIE having a radius of curvature, Rc, from 1.0 mm to 300.0 mm.