Abstract:
A dynamoelectric machine constructed for speed and accuracy of manufacturing has a stator core constructed of 90.degree. symmetrical stator laminations and the windings have differing numbers of poles which overlap in slots of the stator core are wound of the core formed by the laminations in unique fashion. The rotor bars of the machine are skewed to optimize performance of the machine when in the form of a single phase induction motor. Magnet wire leads of the windings are connected directly to terminals on a plug and terminal assembly which is formed for positive location on an end frame of the machine without welding or other fastening to the end frame. The end frames of the machine and stator laminations forming the stator core are formed so as to increase the precision of the final position of the stator relative to the rotor assembly of the dynamoelectric machine. The end frames are constructed for grounding without the use of fasteners or wire. The engagement of the end frames with the stator core is employed as the basis for alignment of the machine components.
Abstract:
A stator core for a stator of an electrical machine includes an elongate stator yoke having an interior surface that defines an axial central opening through the stator yoke. The interior surface further defines a plurality of axial channels about a perimeter of the central opening. A plurality of stator teeth are retained in the plurality of axial channels and spaced apart from one another to define to define axial channels to receive windings of the stator.
Abstract:
A rotor for an electric machine may include a rotor hub, a plurality of permanent magnets disposed about the rotor hub, a first sleeve circumjacent the plurality of permanent magnets, and a second sleeve. The second sleeve may be formed from a metal tape wrapped over the first sleeve. The second sleeve may be bonded to first and second end rings disposed at adjacent ends of the rotor hub. The metal tape may be applied in tension and may wrapped to form butt laps over the first sleeve. The metal tape may be corrosion resistant. Further, the second sleeve formed from the metal tape may protect the rotor from erosion and abrasion from fluid passing over the rotor.
Abstract:
An electrical machine includes a stator and a rotor disposed in a housing of the electrical machine. The stator includes windings having a first set of end turns at a first end of the stator and having a second set of end turns at a second, opposing end of the stator. The stator has a substantially tubular shape and an interior lateral surface. The rotor extends through the interior of the stator. A flow inlet into a volume in the housing about the first end turns is located radially outside of the interior lateral surface of the stator. A flow outlet from the volume in the housing about the first end turns is located radially outside of the interior lateral surface. The inlet and the outlet are cooperatively arranged to communicate a flow of fluid substantially transverse across the first end of the stator.
Abstract:
An exemplary power system may include an electric machine with multiple sets of stator windings, each set of windings being coupled through a separate switch matrix to a common voltage bus, and each of which may be spatially arranged in full pitch around the stator such that stator flux harmonics are substantially reduced. The reduced stator flux harmonics may be associated with phase current harmonic content. In an example application, such power systems may operate in a generating mode to transfer mechanical energy to electrical energy on a DC voltage bus. In some illustrative embodiments, the power system may provide both high-power and high-speed (e.g., 1 MW at 8000 rpm or above) motoring and/or generating capability suitable, for example, for on-board (e.g., marine, aviation, traction) power systems.
Abstract:
A motor driven assembly includes a motor having a motor inlet and a motor outlet, a shaft, and a rotor spaced radially outwards from the shaft. A cooling flow passage is located between the shaft and the rotor. The cooling flow passage fluidly connects the motor inlet and the motor outlet. A compressor is in fluid communication with the motor outlet. The compressor includes a compressor outlet that is in fluid communication with the motor inlet.
Abstract:
An electric machine system includes an electric machine and a companion device. The electric machine has a stationary member and a movable member that, by interaction of magnetic fields, at least one of moves relative to the stationary member or generates electricity when moved relative to the stationary member. One of the stationary member and the movable member includes a permanent magnet. The companion device is coupled to the electric machine to communicate mechanical movement with the movable member. In certain instances, the electric machine system has adaptations for operation of the electric machine system subsea and/or in a corrosive environment.
Abstract:
An exemplary power system may include an electric machine with multiple sets of stator windings, each set of windings being coupled through a separate switch matrix to a common voltage bus, and each of which may be spatially arranged in full pitch around the stator such that stator flux harmonics are substantially reduced. The reduced stator flux harmonics may be associated with phase current harmonic content. In an example application, such power systems may operate in a generating mode to transfer mechanical energy to electrical energy on a DC voltage bus. In some illustrative embodiments, the power system may provide both high-power and high-speed (e.g., 1 MW at 8000 rpm or above) motoring and/or generating capability suitable, for example, for on-board (e.g., marine, aviation, traction) power systems.
Abstract:
Electric machines with, and related methods for, improved fluid flow through the electric machines are disclosed. According to some implementations, an electric machine may include a central opening and a plurality of teeth facing inwardly toward the central opening. Slots may be defined between adjacent teeth, and a wedge may be disposed in one or more of the slots, partitioning the slots into a coils portion and an open portion. A gap may be defined between the stator core and the rotor. A fluid flow path defined from the gap and the open portions of the slots provide for improved fluid flow through the electric machine. Wedges disposed in the slots to maintain the coils into a packed state.
Abstract:
A rotor for an electric machine may include a rotor hub, a plurality of permanent magnets disposed about the rotor hub, a first sleeve circumjacent the plurality of permanent magnets, and a second sleeve. The second sleeve may be formed from a metal tape wrapped over the first sleeve. The second sleeve may be bonded to first and second end rings disposed at adjacent ends of the rotor hub. The metal tape may be applied in tension and may wrapped to form butt laps over the first sleeve. The metal tape may be corrosion resistant. Further, the second sleeve formed from the metal tape may protect the rotor from erosion and abrasion from fluid passing over the rotor.