Abstract:
Catalytic derivatives of novel Group 4 metal complexes wherein the metal is in the +2, +3, or +4 formal oxidation state containing two ligand groups bound by .pi.-electrons, at least one of which is a cyclic or noncyclic, non-aromatic, anionic, dienyl ligand group and having a bridged ligand structure, and the use thereof as catalysts for polymerizing addition polymerizable monomers are disclosed.
Abstract:
Biscyclopentadienyl, Group 4 transition metal complexes containing a conjugated diene ligand group wherein the diene is bound to the transition metal either in the form of .sigma.-complex or a .pi.-complex are readily prepared by reacting in any order: a) a Group 4 metal salt corresponding to the formula M'X.sub.3 or M"X.sub.4, or a Lewis base adduct thereof, b) a conjugated diene, D', c) a reducing agent, and d) a compound of the formula: CpM* or (Cp-Cp)M*n.sub.n, wherein, M' is titanium, zirconium or hafnium in the +3 formal oxidation state; M" is titanium, zirconium or hafnium in the +4 formal oxidation state; X is a halide, C.sub.1-6 hydrocarbyloxy or di(C.sub.1-6 hydrocarbyl)amido group; D' is an uncoordinated diene having the same number of carbons as D and the same substitution pattern as D; M* is a Group 1 or 2 metal cation, a Grignard reagent cation or a tri(C.sub.1-4 hydrocarbyl)silyl group; and n is 1 when M* is a Group 2 metal cation and n is 2 when M* is a Group 1 metal cation, a Grignard reagent cation, or a trihydrocarbylsilyl group with the proviso that reagents a), and d) are not contacted with one another in the absence of reagent c).
Abstract:
This invention is a stirrer, impeller or stirrer paddle used for mixing small volumes of liquid in a vessel having a small capacity for liquid, said impeller being characterized by an impeller blade connected to the bottom portion of a support, where the blade has an opening extending through the blade from the front to the back surface of the blade said opening extending across the rotational axis of the impeller. The invention is also an apparatus comprising that blade, a method of mixing components using the apparatus and an array of two or more of the apparatuses.
Abstract:
Boratabenzene cocatalysts, especially novel pentafluorophenyl boratabenzenes, are useful cocatalysts or activators with metallocenes. They are less expensive than prior art activators, are soluble and offer more irreversible reactions. Compositions comprise at least one metallocene catalyst and at least one dihydroboratabenzene or anion thereof. Processes include polymerizations with metallocenes in the presence of a boratabenzene cocatalyst.
Abstract:
Catalyst systems useful in addition polymerization reactions comprising a Group 4 metal complex and a silylium salt activating cocatalyst are prepared by contacting the metal complex with a silylium salt of a compatible, non-coordinating anion, optionally the silylium salt is prepared by electrochemical oxidation and splitting of the corresponding disilane compound.
Abstract:
The present invention generally relates to an apparatus and method for running a plurality of essentially simultaneous exothermic reactions, endothermic reactions, or a combination thereof in sealed reactors and obtaining physico-chemical data, preferably temperature data, and, optionally, time data, for the reactions, wherein reaction mixtures in the sealed reactors are adiabatically thermally insulated from one another so that temperature in one sealed reactor does not materially affect temperature in any other, including an adjacent, sealed reactor.
Abstract:
This invention is a stirrer, impeller or stirrer paddle used for mixing small volumes of liquid in a vessel having a small capacity for liquid, said impeller being characterized by an impeller blade connected to the bottom portion of a support, where the blade has an opening extending through the blade from the front to the back surface of the blade said opening extending across the rotational axis of the impeller. The invention is also an apparatus comprising that blade, a method of mixing components using the apparatus and an array of two or more of the apparatuses.
Abstract:
A compound useful as a cocatalyst or cocatalyst component, especially for use as an addition polymerization catalyst compound, corresponding to the formula: (A*+a)b(Z*J*j)−cd, wherein: A* is a cation of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, said A* having a charge +a, Z* is an anion group of from 1 to 50, preferably 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is a number from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d, and provided further that one or more of A*, Z* or J* comprises a hydroxyl group or a polar group containing quiescent reactive functionality.
Abstract:
Disclosed are compounds useful as catalyst activators for olefin polymerization, comprising structures of the following formulae: wherein: L+ is a protonated derivative of an element of Group 15 of the Periodic Table of the Elements, additionally bearing two hydrocarbyl substituents of from 1 to 50 carbons each, or a positively charged derivative of an element of Group 14 of the Periodic Table of the Elements, said Group 14 element being substituted with three hydrocarbyl substituents of from 1 to 50 carbons each; R1 is a divalent linking group of from 1 to 40 non-hydrogen atoms; R2 independently each occurrence is a ligand group of from 1 to 50 nonhydrogen atoms with the proviso that in a sufficient number of occurrences to balance charge in the compound, R2 is L+—R1—; M1 is boron, aluminum or gallium; Arf independently each occurrence is a monovalent, fluorinated organic group containing from 6 to 100 non-hydrogen atoms; Y is a Group 15 element; and Z is a Group 14 element.