Abstract:
Described are a MgCl2 based carrier containing Ti(OR)4 and ROH, wherein R is C1˜C7alkyl, and solid catalyst components made from said carrier. The carrier and the solid catalyst components according to the present invention are characterized in that their X-rays powder diffraction spectra, one or two main diffraction lines or a halo appears at 2&thgr; of 2˜14° and in the range of 2&thgr; of 14˜50°, there are the characteristic diffraction lines of anhydrous &agr;-MgCl2. The carrier according to the present invention is directly obtained by reacting anhydrous magnesium chloride with an alcohol and can be used to prepare solid catalyst components without dealcoholization, and the solid catalyst components exhibit high polymerization activity when employed for polymerizing ethylene.
Abstract:
Surprisingly stable olefin polymerization co-catalysts formed from hydroxyaluminoxanes are revealed. In one embodiment of the invention, a solid composition of matter is formed from a hydroxyaluminoxane and a treating agent, whereby the rate of OH-decay for the solid composition is reduced as compared to that of the hydroxyaluminoxane. Processes for converting a hydroxyaluminoxane into a such a solid composition of matter, supported catalysts formed from such solid compositions of matter, as well as methods of their use, are described.
Abstract:
A catalyst and method for performing a Michael addition reaction between a &bgr;-dicarbonyl compound with a cyclic or acyclic enone, where the catalyst comprises a substituted or unsubstituted lanthanum-linked BINOL complex, e.g. a (R,R)-La-linked-BINOL complex (I), are described. The catalyst is stable in air, is readily separated from the reaction mixtures and may be reused if desired.
Abstract:
The invention relates to a process for the in-situ preparation of alkylated single-site transition metal catalysts by contacting a precatalyst with an alkylating agent in the presence of one or more olefin monomers in the polymerization system. The precatalyst, which is produced prior to introducing into the polymerization system, is obtained by contacting a transition metal complex and boron-containing ionizing agent, optionally, with a support.
Abstract:
The present invention relates to a multifunctional reusable catalyst and to a process for the preparation thereof on a single matrix of the support to perform multicomponent reaction in a single pot. The multifunctional catalysts of the invention are useful for the synthesis of chiral vicinal diols by tandem and/or simultaneous reactions involving Heck coupling, N-oxidation and AD reaction of olefins in presence of cinchona alkaloid compounds both as an native one and immobilized one in the said matrix support. This invention also relates to a process for preparing vicinal diols by asymmetric dihydroxylation of olefins in presence of cinchona alkaloid compounds employing reusable multifunctional catalysts as heterogeneous catalysts in place of soluble osmium catalysts.
Abstract:
A process for the preparation of a supported metallocene catalyst incorporating metallocene and co-catalysts components on a support. There is provided a particulate catalyst support material in which an alumoxane co-catalyst is incorporated onto the support particles and contacted with a dispersion of a metallocene catalyst in an aromatic hydrocarbon solvent. The metallocene solvent dispersion and the alumoxane-containing support are mixed at a temperature of about 10° C. or less for a period sufficient to enable the metallocene to become reactively supported on the alumoxane support material. The supported catalyst is recovered from the aromatic solvent and then washed optionally with an aromatic hydrocarbon and then sequentially with a paraffinic hydrocarbon solvent at a temperature of about 10° C. or less. The washed catalyst is dispersed in a viscous mineral oil having a viscosity which is substantially greater that the viscosity of the paraffinic hydrocarbon solvent.
Abstract:
The invention relates to a magnesium compound effective in producing olefin polymers having an increased bulk density and a narrowed particle size distribution, not lowering the stereospecificity of the polymers produced and not lowering the polymerization activity in producing the polymers, to an olefin polymerization catalyst comprising the compound, and to a method for producing such olefin polymers. The olefin polymerization catalyst comprises (A) a solid catalyst component prepared by contacting a magnesium compound having a specific particle size distribution index (P), a titanium compound and an electron donor compound with each other, (B) an organometallic compound, and (C) an electron donor. The olefin polymerization method comprises polymerizing an olefin in the presence of the catalyst to give olefin polymers.
Abstract:
This invention is directed to cationic polymerization of olefins using catalysts comprising a Group 6 or 10 neutral transition metal cation composition having a cyclopropenyl ring, a pi-bonded cyclopentadienyl ligand or cyclopentadienyl group-containing ligand and an amido or imido ligand. The precursor of the neutral transition metal composition is activated to a catalytic state by exposure to an activator composition that may be any of the heretofore known activator compositions such as an alumoxane or a compatible non-coordinating anion (NCA).
Abstract:
A novel intercalation compound is provided, in which compound monohydric alcohol is intercalated between layers of a layered compound comprising vanadium, phosphorus and oxygen as primary components, characterized in that the monohydric alcohol is aliphatic secondary monohydric alcohol, alicyclic monohydric alcohol, or aromatic monohydric alcohol. By heating the intercalation compound, a vanadium-phosphorus mixed oxide having a BET specific surface area of at least 80 m2/g can be obtained.
Abstract:
Disclosed is a novel class of modified ruthenium catalysts useful in the one step synthesis of 1,3-PDO comprising (a) a cobalt component comprising one or more non-ligated cobalt compounds; and (b) a ruthenium component comprising in major part a ruthenium carbonyl compound ligated with a phospholanoalkane ligand, solubilized in an ether solvent, that provides potential improvements in cost and performance in one step hydroformylation/hydrogenation. For example, cobalt-ruthenium-bidentate, bis(phospholano)alkane catalyst precursors in ether solvents provide good yields of 1,3-PDO in a one step synthesis.