Abstract:
An article removal platform assembly with laterally movable finger plate is provided particularly suitable for abutting a conveyor belt as it passes over a sprocket wheel to remove glass articles and broken glass fragments from the belt. The generally rectangular finger plates are mounted in a lateral sliding configuration to a planar platform by at least three fasteners extending through mounting apertures through the finger plates 50, spaced to prevent lateral or longitudinal tilt. The mount has elongated fastening members adjustably aligned to let fingers mate in a conveyor belt and freely slide laterally a limited amount in either direction. Thus, the finger plates can slide side-to-side to follow belt wander when the fasteners engage ridges of the apertures through the finger plates. Also provided are snap-in caps for the apertures for maintaining a planar discharge surface having a constant coefficient of sliding friction that does not accumulate residue. The conveyor belt outer surface is formed by ribs defining channels for receiving the finger plate fingers disposed adjacent to the sprocket wheel to form therewith a co-planar discharge route. The fingers are stubby plates with upwardly slanted pointed ends positioned to scoop residue including glass fragments out of the belt channels and contoured lower surfaces for mating peripherally about the path of the conveyor belt where it bends over the sprocket wheel. Brittle plastic fingers, if overloaded by glass fragments wedging under the fingers would snap off for discharge onto co-planar discharge surface.
Abstract:
A self-clearing conveyor transfer system for transferring articles between two mutually perpendicular conveyor belts. One version of the transfer system includes a finger transfer plate with fingers at one end extending into the end of a raised-rib belt and powered rollers at the opposite end rotating about axes perpendicular to the fingers. A second conveyor belt perpendicular to the raised-rib belt advances parallel to the roller axes. Articles transfer from one belt to the other across the finger transfer plate. Because the rollers are powered, straggling articles are not stranded on the transfer plate.
Abstract:
A modular conveyor belt constructed of modules having upstanding ribs, each in the form of textured upper ridge structure atop an elongated rib base. Consecutive ribs are spaced apart laterally on the top surface of the modules. Longitudinal slots between laterally consecutively ribs admit the fingers of transfer plates for smooth transfer of articles on and off the belt. The textured rib structure includes rows of teeth, truncated pyramids or cones, corrugated structure, and sinuous beads atop which articles are supported with little slipping in wet conditions.
Abstract:
A spiral conveyor for positively driving a conveyor belt (20) along a helical path. The spiral conveyor includes a rotating cylindrical tower (10) with parallel drive members (14) extending from the bottom to the top of the tower on its periphery. Each drive member includes an outwardly protruding ridge (28) that varies in height from the bottom to the top of the tower. The variations in height facilitate the belt's entry onto and exit from the tower and robust, positive driving engagement with the inside edge of the belt along the majority of its path along the tower. In another version, a conveyor belt has teeth (62) with guide surfaces (78, 79) at the inside edge of the belt. The teeth guide the drive members between belt rows into driving engagement with drive faces at the inside edge of the belt.
Abstract:
Conveying systems and method for detecting the presence and amount of biological contaminants or additives on a conveyor belt. The conveyor system includes a conveyor belt having embedded biosensors. Transmitters co-located in the belt with the biosensors transmit biosensor signals to a remote controller. The remote controller allows remote monitoring of the contamination level on the conveyor belt.
Abstract:
A conveyor belt having a sensor probe extending upward from an outer conveying surface into a mat of bulk products conveyed on the belt. The probe senses a condition of the product mat at a predetermined depth. The probe height above the conveying surface may be fixed or may be adjustable to be positioned at a critical depth within the product mat.
Abstract:
An environmentally controlled conveyor system including a sensor-instrumented conveyor belt conveying products continuously through a thermal-treatment process and a method for determining the instantaneous position of the sensors. Temperature or other sensors are embedded in the conveyor belt across its width and along its length to advance with the product through the thermal-treatment process, such as through a pasteurizer tunnel. The sensor measurements are transmitted wirelessly from the belt to a remote system controller for monitoring or controlling the system. Data from sensors measuring environmental or belt conditions are used to determine the instantaneous positions of the sensors to coordinate the sensor data with sensor position.
Abstract:
A self-clearing conveyor transfer system for transferring articles between two mutually perpendicular conveyor belts. One version of the transfer system includes a finger transfer plate with fingers at one end extending into the end of a raised-rib belt and powered rollers at the opposite end rotating about axes perpendicular to the fingers. A second conveyor belt perpendicular to the raised-rib belt advances parallel to the roller axes. Articles transfer from one belt to the other across the finger transfer plate. Because the rollers are powered, straggling articles are not stranded on the transfer plate.
Abstract:
An apparatus for diverting a stream of articles, the apparatus including a first conveyor belt conveying a stream of articles along a conveying surface, a second conveyor belt disposed parallel to the first conveyor belt and having a conveying surface, and a carrier arranged to travel along a path parallel to the first and second conveyor belts. A first drive mechanism drives the first conveyor belt at a first speed in a first direction, and a second drive mechanism drives the second conveyor belt at a second speed in a second direction opposite to the first direction. A diverter element is affixed to the carrier and extends across at least a portion of the conveying surfaces of the first and second conveyor belts to divert articles in the stream on the first conveyor belt onto the second conveyor belt. A differential drive mechanism drives the carrier at a speed and in a direction that depend on the first speed and the second speed. The differential drive mechanism includes a first rotating member receiving input based on the speed of the first conveyor belt, a second rotating member receiving input based on the speed of the second conveyor belt, and a differential gear arrangement operationally connected to the first and second rotating members.
Abstract:
A belt conveyor with a surface layer transferred onto its article-carrying or other surface to impart certain effective properties to the surface. The belt conveyor comprises a conveyor belt driven by a belt drive along a belt-conveying path. A transfer element transfers a coating material to a belt surface along a section of the belt-conveying path. Metallic bearing surfaces in contact with the belt surface act as transfer elements from which an oxidizable metal is rubbed by the relative motion of the belt to form a high-friction metallic oxide layer on the belt surface. Another transfer element is realized by an applicator with a reservoir for storing a coating material. The applicator is positioned close to the belt surface to dispense a layer of coating material with properties that mask the inherent surface properties of the belt. In yet another version, the conveyed articles themselves serve as transfer elements.