Abstract:
A rake receiver finger assignor is configured to assign a rake receiver finger to a time offset between identified signal path time offsets in accordance with a concentration of identified signal paths from a transmitter to a rake receiver. In accordance with the exemplary embodiment, a number of identified signal paths having time offsets within a time window are observed to determine the concentration of signal paths identified by a path searcher. If the number of identified signal paths indicates a concentrated distribution of signal paths such as during a fat path condition, at least one rake finger is assigned between at a time offset between two identified signal paths.
Abstract:
A wireless communications network (120) responds to each incoming call placed to a wireless communications device (134) by transmitting a call-paging message (418) within a corresponding partition of a digital radio frame of prescribed format. Responsive to each occurrence of a broadcast event (404), the network transmits (414) a repeating broadcast-paging message announcing the availability of broadcast content from the network. The broadcast-paging message is transmitted multiple times within each digital radio frame. Another sequence (500) describes WCD operation in this network. Responsive to wakeup (502) from sleep, the WCD detects (509) received signal quality. The WCD also receives (510) scheduled network transmission of a call-paging message and a number of instances (at least one) of a repeating network transmitted broadcast-paging message that occurs multiple times for each scheduled transmission of the call-paging message. This number varies inversely with the detected signal quality.
Abstract:
Systems and methodologies are described that facilitate acquisition of a cell in the presence of interfering cells. An undesired cell in close proximity to a user equipment unit (UE) can inhibit detection of a desired cell. For instance, a femto cell near the UE can interfere with detection and acquisition of a macro cell. The UE can detect the undesired cell and reconstruct an estimate of signals transmitted by the undesired cell. The estimate can be employed to cancel interference from received signals to facilitate acquisition of a desired cell.
Abstract:
Techniques for deriving a channel impulse response estimate (CIRE) having improved quality are described. A first CIRE with multiple channel taps is obtained based on (1) an initial CIRE derived from a received pilot or (2) a filtered CIRE derived from the initial CIRE. In one aspect, the channel taps in the first CIRE are scaled with multiple scaling factors to obtain a second CIRE. For point-wise LMMSE scaling, the energy of each channel tap is estimated. The noise energy for the channel taps is also estimated, e.g., based on energies of channel taps on one or both edges of the first CIRE. Each channel tap is scaled based on a scaling factor determined by the energy of that channel tap and the noise energy. Each channel tap with energy below a threshold may be set to zero. In another aspect, the second CIRE is obtained by zeroing out selected ones of the channel taps in the first CIRE.
Abstract:
A circuit and algorithm are disclosed for a step2 search of a three step search of synchronization channels in a W-CDMA system. A mobile terminal of the CDMA system includes an RF downconverter for receiving I and Q signals. A searcher, responsive to the I and Q signals, includes a first correlator for correlating the I and Q signals with a primary synchronization code on a primary synchronization channel, and a second correlator for correlating I and Q signals with a secondary synchronization code on a secondary synchronization channel. The correlated I and Q signals are added for each of the secondary synchronization codes. An energy calculator and a maximum energy detector use the correlated I and Q signals of both the primary and secondary synchronization channels to detect the most likely scrambling code group of secondary synchronization codes.
Abstract:
Techniques for controlling transmit power for a data transmission sent on multiple data channels, which may be intermittently active, are described. Each data channel is monitored for activity (e.g., based on an error correction code, received signaling information, received block energy, and so on) and deemed to be dormant or not dormant (e.g., based on the amount of elapsed time since activity was last detected on the data channel). A signal quality (SIR) target may be maintained for each non-dormant data channel and updated based on the status of received data blocks for the data channel. A final SIR target, used for power control of the data transmission, may be set to the highest SIR target among the SIR targets for the non-dormant data channels. The final SIR target may also be updated directly based on the status of received data blocks for the non-dormant data channels.
Abstract:
This disclosure describes equalization techniques for spread spectrum wireless communication. The techniques may involve estimating a channel impulse response, estimating channel variance, and selecting filter coefficients for an equalizer based on the estimated channel impulse response and the estimated channel variance. Moreover, in accordance with this disclosure, the channel variance estimation involves estimation of two or more co-variances for different received samples. Importantly, the equalizer is “fractionally spaced,” which means that the equalizer defines fractional filtering coefficients (filter taps), unlike conventional equalizers that presume that filter coefficients are defined at integer chip spacing. The techniques can allow the equalizer to account for antenna diversity, such as receive diversity, transmit diversity, or possibly both.
Abstract:
To perform erasure detection for an intermittently active transport channel with unknown format, a receiver determines an energy metric and a symbol error rate (SER) for a received block with CRC failure. The receiver computes uncorrelated random variables u and v for the received block based on the energy metric and SER, the estimated means and standard deviations of the energy metric and SER, and a correlation coefficient indicative of the correlation between the energy metric and SER. The receiver then evaluates the uncorrelated random variables u and v based on at least one decision criterion and declares the received block to be an erased block or a DTX block based on the result of the evaluation. The decision criterion may be defined based on a target probability of false alarm and adjusted based on another metric, such as a zero state bit, for the received block.
Abstract:
Systems and techniques are disclosed relating to wireless communications. These systems and techniques involve wireless communications wherein a device may be configured to recover an information signal from a carrier using a reference signal, detect a frequency error in the information signal; and periodically tune the reference signal to reduce the frequency error.
Abstract:
Schemes to time-align transmissions from multiple base stations to a terminal. To achieve time-alignment, differences between the arrival times of transmissions from the base stations, as observed at the terminal, are determined and provided to the system and used to adjust the timing at the base stations such that terminal-specific radio frames arrive at the terminal within a particular time window. In one scheme, a time difference between two base stations is partitioned into a frame-level time difference and a chip-level time difference. Whenever requested to perform and report time difference measurements, the terminal measures the chip-level timing for each candidate base station relative to a reference base station. Additionally, the terminal also measures the frame-level timing and includes this information in the time difference measurement only if required. Otherwise, the terminal sets the frame-level part to a predetermined value (e.g., zero).