Abstract:
Encoding/decoding an audio signal having one or more audio components, wherein each audio component is associated with a spatial location. A first audio signal presentation (z) of the audio components, a first set of transform parameters (w(f)), and signal level data (β2) are encoded and transmitted to the decoder. The decoder uses the first set of transform parameters (w(f)) to form a reconstructed simulation input signal intended for an acoustic environment simulation, and applies a signal level modification (α) to the reconstructed simulation input signal. The signal level modification is based on the signal level data (β2) and data (p2) related to the acoustic environment simulation. The attenuated reconstructed simulation input signal is then processed in an acoustic environment simulator. With this process, the decoder does not need to determine the signal level of the simulation input signal, thereby reducing processing load.
Abstract:
Various embodiments are disclosed for (possibly simultaneously) applying EQ and DRC to audio signals. In an embodiment, a method comprises: dividing an input audio signal into n frames, where n is a positive integer greater than one; dividing each frame of the input audio signal into Nb frequency bands, where Nb is a positive integer greater than one; for each frame n: computing an input level of the input audio signal in each band f, resulting in a input audio level distribution for the input audio signal; computing a gain for each band f based at least in part on a mapping of one or more properties of the input audio level distribution to a reference N audio level distribution computed from one or more reference audio signals; and applying each computed gain for each band f to each
Abstract:
Diffuse or spatially large audio objects may be identified for special processing. A decorrelation process may be performed on audio signals corresponding to the large audio objects to produce decorrelated large audio object audio signals. These decorrelated large audio object audio signals may be associated with object locations, which may be stationary or time-varying locations. For example, the decorrelated large audio object audio signals may be rendered to virtual or actual speaker locations. The output of such a rendering process may be input to a scene simplification process. The decorrelation, associating and/or scene simplification processes may be performed prior to a process of encoding the audio data.
Abstract:
Described herein is a method (30) of rendering an audio signal (17) for playback in an audio environment (27) defined by a target loudspeaker system (23), the audio signal (17) including audio data relating to an audio object and associated position data indicative of an object position. Method (30) includes the initial step (31) of receiving the audio signal (17). At step (32) loudspeaker layout data for the target loudspeaker system (23) is received. At step (33) control data is received that is indicative of a position modification to be applied to the audio object in the audio environment (27). At step (38) in response to the position data, loudspeaker layout data and control data, rendering modification data is generated. Finally, at step (39) the audio signal (17) is rendered with the rendering modification data to output the audio signal (17) with the audio object at a modified object position that is between loudspeakers within the audio environment (27).
Abstract:
Diffuse or spatially large audio objects may be identified for special processing. A decorrelation process may be performed on audio signals corresponding to the large audio objects to produce decorrelated large audio object audio signals. These decorrelated large audio object audio signals may be associated with object locations, which may be stationary or time-varying locations. For example, the decorrelated large audio object audio signals may be rendered to virtual or actual speaker locations. The output of such a rendering process may be input to a scene simplification process. The decorrelation, associating and/or scene simplification processes may be performed prior to a process of encoding the audio data.
Abstract:
Embodiments are directed to a method for processing an input audio signal, comprising: splitting the input audio signal into at least two components, in which the first component is characterized by fast fluctuations in the input signal envelope, and a second component that is relatively stationary over time; processing the second, stationary component by a decorrelation circuit; and constructing an output signal by combining the output of the decorrelator circuit with the input signal and/or the first component signal.
Abstract:
Methods for dialogue enhancing audio content, comprising providing a first audio signal presentation of the audio components, providing a second audio signal presentation, receiving a set of dialogue estimation parameters configured to enable estimation of dialogue components from the first audio signal presentation, applying said set of dialogue estimation parameters to said first audio signal presentation, to form a dialogue presentation of the dialogue components; and combining the dialogue presentation with said second audio signal presentation to form a dialogue enhanced audio signal presentation for reproduction on the second audio reproduction system, wherein at least one of said first and second audio signal presentation is a binaural audio signal presentation.
Abstract:
In some embodiments, virtualization methods for generating a binaural signal in response to channels of a multi-channel audio signal, which apply a binaural room impulse response (BRIR) to each channel including by using at least one feedback delay network (FDN) to apply a common late reverberation to a downmix of the channels. In some embodiments, input signal channels are processed in a first processing path to apply to each channel a direct response and early reflection portion of a single-channel BRIR for the channel, and the downmix of the channels is processed in a second processing path including at least one FDN which applies the common late reverberation. Typically, the common late reverberation emulates collective macro attributes of late reverberation portions of at least some of the single-channel BRIRs. Other aspects are headphone virtualizers configured to perform any embodiment of the method.
Abstract:
Methods for dialogue enhancing audio content, comprising providing a first audio signal presentation of the audio components, providing a second audio signal presentation, receiving a set of dialogue estimation parameters configured to enable estimation of dialogue components from the first audio signal presentation, applying said set of dialogue estimation parameters to said first audio signal presentation, to form a dialogue presentation of the dialogue components; and combining the dialogue presentation with said second audio signal presentation to form a dialogue enhanced audio signal presentation for reproduction on the second audio reproduction system, wherein at least one of said first and second audio signal presentation is a binaural audio signal presentation.
Abstract:
A method of encoding channel or object based input audio for playback, the method including the steps of: (a) initially rendering the channel or object based input audio into an initial output presentation; (b) determining an estimate of the dominant audio component from the channel or object based input audio and determining a series of dominant audio component weighting factors for mapping the initial output presentation into the dominant audio component; (c) determining an estimate of the dominant audio component direction or position; and (d) encoding the initial output presentation, the dominant audio component weighting factors, the dominant audio component direction or position as the encoded signal for playback.