Abstract:
A luminaire for re-use, a retro-fit device, or mechanism, that are designed to both fit into an existing luminaire while also making efficient use of LEDs or other solid state light elements is provided. Thermal elements are provided that act to remove heat generated by light elements. A housing is provided that may be configured to receive LEDs, or other optical elements, that are aimed to provide light in a desired direction through mounting to a facet or mounting surface, and have effective thermal environment control through one or more fins mounted to the side of the facet opposite the light element. Luminaires are provided for both original designs that utilize solid state light elements, and retrofit assemblies designed to convert an existing luminaire (that uses a traditional light source or sources) into a luminaire that uses solid state light elements.
Abstract:
A luminaire for re-use, a retro-fit device, or mechanism, that are designed to both fit into an existing luminaire while also making efficient use of LEDs or other solid state light elements is provided. Thermal elements are provided that act to remove heat generated by light elements. A housing is provided that may be configured to receive LEDs, or other optical elements, that are aimed to provide light in a desired direction through mounting to a facet or mounting surface, and have effective thermal environment control through one or more fins mounted to the side of the facet opposite the light element. Luminaires are provided for both original designs that utilize solid state light elements, and retrofit assemblies designed to convert an existing luminaire (that uses a traditional light source or sources) into a luminaire that uses solid state light elements.
Abstract:
The present disclosure provides an LED based light unit that produces an output lighting pattern that meets desired lighting characteristics using a reduced number of LED elements. The present disclosure provides a number of point sources that are directed into a desired direction such that, when combined with other point sources, a synthesized light output is provided that minimizes the LED headcount.
Abstract:
A lighting fixture, such as a recessed or can type lighting fixture, has an external housing containing a number of LEDs used to provide light. The LEDs are connected to a power supply, and are mounted on a heat sink that includes heat-dissipating fins that are oriented vertically within a vertical portion of an internal flow tube. The internal flow tube may be U-shaped, with entry and exit points on opposite ends of the flow tube. The external housing and flow tube are oriented so as to create a path for air to rise along the heat sink as it is heated then flow back down along the unheated path of the flow tube. An air mover may also be placed in the flow tube to provide further air flow through the flow tube.
Abstract:
Solar panels with an integrated DC-to-AC converter are provided. Such solar panels are usable as an independent generator of AC power or as part of an array of panels, and may be grid-connected with low initial cost of entry. Other aspects provide a panel with a built-in array of “micro-batteries” for energy storage in off-grid applications or grid-connected. Also provided herein, in another aspect, is an AC solar panel whose internal design and structure is optimized for the generation of AC power. Intrinsically, this includes an embedded DC-to-AC converter or converters. The AC solar panel may be used as an independent generator of AC power or as part of an array of panels. In still further aspects, one or more panels may be used as a remote AC power source with after sun-down power generation capability, low initial cost of entry and ease of deployment.
Abstract:
A light unit that includes an internal power supply that may be used in the event of an external power failure to provide power to the light unit. In one aspect, the present disclosure provides a lighting apparatus, comprising (a) a power input configured to receive external power from an external power source; (b) a solid state light element that is interconnected to the power input; (c) a detection circuit interconnected to the power input and that, when power is not provided to the power input, measures input impedance at the power input and determines if there is a lack of external power; and (d) a back-up power source that is interconnected to the solid state light element and the power input and that provides power to the solid state light element when the light element is; not provided with power from the power input.