Abstract:
The integrated solar absorption heat pump system includes an absorption heat pump assembly (AHPA) having a generator, a condenser in fluid communication with the generator, an evaporator/absorber in fluid communication with the condenser and the generator, and a heat exchanger in communicating relation with the evaporator/absorber; a solar collector in fluid communication with the generator of the AHPA; a photovoltaic thermal collector in communicating relation with the evaporator/absorber of the AHPA; a plurality of pumps configured for pumping a fluid throughout the system to provide the desired heating or cooling; a power storage source, e.g., a solar battery, in communicating relation with the photovoltaic thermal collector; and a coil unit in communicating relation to the evaporator/absorber for receiving an air-stream. The absorption heat pump assembly can include an absorber and a solution heat exchanger.
Abstract:
An offshore compressed air energy storage system has a barge comprising with a deck, and at least one pressure vessel configured to store compressed air. A power source powers at least one air compressor configured to pressurize the pressure vessel. A compander set has at least one turboexpander having an input, an output, and a shaft, as well as at least one heat exchanger and at least one turbocompressor. A mass air control valve is configured to control the compressed air flow from the pressure vessel to the turboexpander. A generator is in communication with the shaft of the turboexpander, and a control system. The at least one pressure vessel is buoyant, and wherein the at least one air compressor, the turboexpander, the mass air control valve, and the generator are attached to the barge.
Abstract:
The present disclosure is directed to energy storage and supply management system. The system may include one or more of a control unit, which is in communication with the power grid, and an energy storage unit that stores power for use at a later time. The system may be used with traditional utility provided power as well as locally generated solar, wind, and any other types of power generation technology. In some embodiments, the energy storage unit and the control unit are housed in the same chassis. In other embodiments, the energy storage unit and the control unit are separate. In another embodiment, the energy storage unit is integrated into the chassis of an appliance itself.
Abstract:
Provided are novel Building Integrable Photovoltaic (BIPV) modules having one or more connectors that are movable between extended and retracted positions. Connector adjustment may be performed in the field, for example, during installation of a module. In certain embodiments, a connector includes a connector body and extension body. The extension body flexibly attaches the connector body to the module and allows the connector body to move with respect to the module edge. In an extended position, the connector body is positioned closer to the edge and is configured to make electrical connections to a joiner connector for interconnecting with an adjacent module. In a retracted positioned, the connector body is positioned further from the edge and is configured to make electrical connections to a jumper for interconnecting the conductive elements of the connector. In certain embodiments, a jumper does not protrude beyond the edge when connected to the connector body.
Abstract:
The present invention discloses a heat pump system, a controlling method thereof, and a heat pump unit using the heat pump system. The heat pump system includes a compressor, a first heat exchanger, a second heat exchanger, a heat-recovery-type heat exchanger, a multi-way valve, throttling elements, and a mode-switching flow path, which has both air conditioning and water heating functions. By switching the multi-way valve and powering on/off electromagnetic valves in the heat pump system, the controlling method controls the heat pump system to implement multiple functional modes. Furthermore, the heat pump unit using the heat pump system provides multiple functions simply by laying a small amount of parts and elements and pipelines outdoors, thereby greatly reducing the engineering cost and cost of parts, and ensuring a much higher water heating efficiency.
Abstract:
The present invention provides a high-performance insulating hybrid photovoltaic-thermal solar panel core. The high-performance insulating hybrid photovoltaic-thermal solar panel core allows the polymer aluminum-based integrated plate to have a better light transmission as made of transparent polyethylene terephthalate, and contains a high temperature resistant insulating tape that completely encloses the edge of the aluminum-based integrated plate thus to enhance the insulation of the assembly. The high-performance insulating hybrid photovoltaic-thermal solar panel core is widely applied to the field of renewable energy source application products, such as solar water pumps, hybrid photovoltaic-thermal solar building members, solar heating systems, etc., thereby improving the aesthetics and insulation of the products.
Abstract:
The present invention is in the field of Voltaic systems, specifically PV-systems, having improved functionality, building elements comprising said system, and objects comprising said systems.Such systems are typically not integrated into for example buildings. Rather such systems are placed on top of for example buildings, or the like, making these kinds of systems are visually unattractive.
Abstract:
Described herein are packaged luminescent solar concentrator panels. Some embodiments comprise a photovoltaic device (e.g a solar cell), a luminescent solar concentrator, and a rigid base. The packaged luminescent solar concentrator forms a rigid structure. A frame may be used to engage the at least one photovoltaic device. The luminescent solar concentrator device can comprise a planar layer that acts to absorb photons. The packaged luminescent solar concentrator panel collects both direct and diffuse light and provides highly efficient and low cost solar harvesting solutions by using a minimal amount of expensive solar cells. The packaged luminescent solar concentrator panel is well suited for building integrated photovoltaics such as sunroofs, skylights, windows, and facades of commercial and residential buildings.
Abstract:
An energy management system has an integration control portion that performs control to charge a storage battery with a power of such an amount that a power consumption including a power supplied by a supply portion is equal to or smaller than a target value indicated by power consumption target information recorded in a recording portion when a power consumption detected by a detection portion is smaller than the target value, and to supply a building with a power with which the storage battery is charged such that the power consumption including the power supplied by the supply portion coincides in amount with a power equal to or smaller than the target value indicated by the power consumption target information recorded in the recording portion when the power consumption detected by the detection portion is larger than the target value.
Abstract:
The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.