Abstract:
A system and method for controlling switching in an AC-AC converter is disclosed. A controller for the AC-AC converter determines a direction of current flow on supply lines that provide AC power to the AC-AC converter and determines a switching pattern for each of a plurality of line-side switches and each of a plurality of floating-neutral side switches in the AC-AC converter based on the determined direction of current flow on each of the supply lines. The controller causes the line-side switches and the floating-neutral side switches to operate in an ON or OFF condition according to the determined switching pattern, such that a controlled current flow is output from the AC-AC converter. The controller also implements a safe-switching routine when transitioning from a first switching pattern to a second switching pattern that prevents a non-zero current from being interrupted during the transitioning between the first and second switching patterns.
Abstract:
An area electric power system includes a number of direct current power sources, and a number of inverters operatively associated with the number of direct current power sources. Each of the number of inverters is structured to provide real power and controlled reactive power injection to detect islanding. An output is powered by the number of inverters. A number of electrical switching apparatus are structured to electrically connect the number of inverters to and electrically disconnect the number of inverters from a utility grid. A number of devices are structured to detect islanding with respect to the utility grid responsive to a number of changes of alternating current frequency or voltage of the output.
Abstract:
Power is provided from a power source and a status of the power source is signaled by controlling a waveform of an AC voltage generated from the power source. The status may include, for example, a capacity of the power source. In some embodiments, a frequency of the AC voltage may be controlled to signal the status. The power source may include, for example, an uninterruptible power supply (UPS), and signaling a status of the power source may include controlling an inverter of the UPS to signal the status. Related systems are also described.
Abstract:
A load control device includes an input and an output connectable to an AC source and an AC load, respectively, with one or more supply lines each corresponding to a phase in the load connecting the input and output. Line-side switches are connected between a line terminal and load terminal, and floating-neutral side switches are connected to the load terminal at one end and at a common neutral connection at another end. A controller determines a direction of current flow on each of the supply lines, determines a switching pattern for each of the line-side switches and each of the floating-neutral side switches based on the determined direction of current flow, and causes each of the line-side switches and floating-neutral side switches to operate in an On condition or an Off condition according to the determined switching pattern, such that a controlled uninterrupted current is provided to the AC load.
Abstract:
A load control device to control current flow to an AC load includes a circuit having line-side switches and floating-neutral side switches, along with a controller connected to the circuit that is programmed to control the circuit so as to cause each of the line-side switches and each of the floating-neutral side switches to switch between an On condition or an Off condition to selectively operate the circuit in an active mode and a free-wheeling mode. A full phase voltage is provided to the AC load during the active mode and a zero voltage is provided to the AC load during the free-wheeling mode. The controller applies a modulating function to the circuit, so as to modulate a supply voltage to control a frequency and an average of a load voltage present across terminals of the AC load, thereby enabling variable frequency operation of the AC load.