Abstract:
In a process for producing biphenyl compounds, a Cn aromatic hydrocarbon may be hydroalkylated to give C2n cycloalkylaromatic compounds and byproduct Cn saturated cyclic hydrocarbons. The C2n cycloalkylaromatic compounds are dehydrogenated to provide the biphenyl compounds. The Cn saturated cyclic hydrocarbons may also be dehydrogenated back to the corresponding Cn aromatic hydrocarbon, which may be recycled to provide additional feed. Although both the intermediate C2n cycloalkylaromatic compounds and the byproduct Cn saturated cyclic hydrocarbons should be dehydrogenated, at least part of the dehydrogenation of the Cn saturated cyclic hydrocarbons should take place in the absence of C2n or greater hydrocarbons. Thus, dehydrogenation of the byproduct Cn saturated cyclic hydrocarbons should take place at least in part separately from dehydrogenation of the C2n cycloalkylaromatic compounds.
Abstract:
Processes for converting C8 aromatic hydrocarbons. In some embodiments, a process for converting a hydrocarbon feed that can include C8 aromatic hydrocarbons can include feeding the hydrocarbon feed into a conversion zone and contacting the hydrocarbon feed at least partly in a liquid phase with an isomerization catalyst composition in the conversion zone under conversion conditions to effect isomerization of at least a portion of the C8 aromatic hydrocarbons to produce a conversion product rich in para-xylene. In some embodiments, the isomerization catalyst composition can include a zeolite (preferably a ZSM-5 zeolite) that can have a silica (SiO2) to alumina (AI2O3) molar ratio of 10 to 100, a total surface area of 200 m2/g to 700 m2/g, a micropore surface area of 50 m2/g to 600 m2/g, and an external surface area of 55 m2/g to 550 m2/g.
Abstract:
Novel MEL framework type zeolites can be made to have small crystallite sizes and desirable silica/SiO2 molar ratios. Catalyst compositions comprising such MEL framework type zeolites can be particularly advantageous in isomerization C8 aromatic mixtures. An isomerization process for converting C8 aromatic hydrocarbons can advantageously utilize a catalyst composition comprising a MEL framework type zeolite.
Abstract:
Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.
Abstract:
Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.
Abstract:
In a process for dehydrogenating cyclohexylbenzene and/or alkyl-substituted cyclohexylbenzene compounds, a dehydrogenation catalyst comprising at least one Group 10 metal compound on a support is heated in the presence of hydrogen from a first temperature from 0° C. to 200° C. to a second, higher temperature from 60° C. to 500° C. at a ramp rate no more than 100° C./hour. The dehydrogenation catalyst is contacted with hydrogen at the second temperature for a time from 3 to 300 hours to produce an activated dehydrogenation catalyst. A feed comprising cyclohexylbenzene and/or an alkyl-substituted cyclohexylbenzene compound is then contacted with hydrogen in the presence of the activated dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising biphenyl and/or an alkyl-substituted biphenyl compound.
Abstract:
In a process for producing biphenyl compounds, a Cn aromatic hydrocarbon may be hydroalkylated to give C2n cycloalkylaromatic compounds and byproduct Cn saturated cyclic hydrocarbons. The C2n cycloalkylaromatic compounds are dehydrogenated to provide the biphenyl compounds. The Cn saturated cyclic hydrocarbons may also be dehydrogenated back to the corresponding Cn aromatic hydrocarbon, which may be recycled to provide additional feed. Although both the intermediate C2n cycloalkylaromatic compounds and the byproduct Cn saturated cyclic hydrocarbons should be dehydrogenated, at least part of the dehydrogenation of the Cn saturated cyclic hydrocarbons should take place in the absence of C2n or greater hydrocarbons. Thus, dehydrogenation of the byproduct Cn saturated cyclic hydrocarbons should take place at least in part separately from dehydrogenation of the C2n cycloalkylaromatic compounds.
Abstract:
In a process for producing a methyl-substituted biphenyl compound, at least one methyl-substituted cyclohexylbenzene compound of the formula: wherein each of m and n is independently an integer from 1 to 3, is contacted with a dehydrogenation catalyst under conditions effective to produce a dehydrogenation reaction product comprising at least one methyl-substituted biphenyl compound. The dehydrogenation catalyst comprises an element or compound thereof from Group 10 of the Periodic Table of Elements deposited on a refractory support, such as alumina.