Abstract:
Systems, devices and methods for communication include an ear canal microphone configured for placement in the ear canal to detect high frequency sound localization cues. An external microphone positioned away from the ear canal can detect low frequency sound, such that feedback can be substantially reduced. The canal microphone and the external microphone are coupled to a transducer, such that the user perceives sound from the external microphone and the canal microphone with high frequency localization cues and decreased feedback. Wireless circuitry can be configured to connect to many devices with a wireless protocol, such that the user can receive and transmit audio signals. A bone conduction sensor can detect near-end speech of the user for transmission with the wireless circuitry in noisy environment. Noise cancellation of background sounds near the user can improve the user's hearing of desired sounds.
Abstract:
An implantable device is configured for placement in the eardrum to transmit an audio signal to a user. The device may be configured to improve transmission of an electromagnetic signal comprising light energy from an input assembly on a lateral side of eardrum to an output assembly positioned on a medial side of the eardrum, for example at least partially in the middle ear of the user. The output assembly may comprise a transducer or at least two electrodes configured to stimulate the cochlea, for example. The device may comprise an opening to transmit the light signal or an optic to transmit the light signal. Alternatively the device may be configured to support a transducer of the output assembly with the eardrum when the device is implanted in the eardrum, such that the eardrum vibrates in response to the signal electromagnetic signal. The electromagnetic signal may comprise light energy for a magnetic field.
Abstract:
A processor comprises instructions to adjust a bias of an input signal in order to decrease a duty cycle of a pulse modulated optical signal. The bias can be increased, decreased, or maintained in response to one or more measured values of the signal. In many embodiments, a gain of the signal is adjusted with the bias in order to inhibit distortion. The bias can be adjusted slowly in order to inhibit audible noise, and the gain can be adjusted faster than the bias in order to inhibit clipping of the signal. In many embodiments, one or more of the bias or the gain is adjusted in response to a value of the signal traversing a threshold amount. The value may comprise a trough of the signal traversing the threshold.
Abstract:
The present invention provides hearing systems and methods that provide an improved high frequency response. The high frequency response improves the signal-to-noise ratio of the hearing system and allows for preservation and transmission of high frequency spatial localization cues.
Abstract:
A device to transmit an audio signal to a user comprises a transducer and a support. The support is configured for placement on the eardrum to drive the eardrum. The transducer is coupled to the support at a first location to decrease occlusion and a second location to drive the eardrum. The transducer may comprise one or more of an electromagnetic balanced armature transducer, a piezoelectric transducer, a magnetostrictive transducer, a photostrictive transducer, or a coil and magnet. The device may find use with open canal hearing aids.
Abstract:
Systems, devices, and methods for communication include an ear canal microphone configured for placement in the ear canal to detect high frequency sound localization cues. An external microphone positioned away from the ear canal can detect low frequency sound, such that feedback can be substantially reduced. The canal microphone and the external microphone are coupled to a transducer, such that the user perceives sound from the external microphone and the canal microphone with high frequency localization cues and decreased feedback. Wireless circuitry can be configured to connect to many devices with a wireless protocol, such that the user can receive and transmit audio signals. A bone conduction sensor can detect near-end speech of the user for transmission with the wireless circuitry in a noisy environment. Noise cancellation of background sounds near the user can be provided.
Abstract:
A device to transmit an audio signal to a user comprises a transducer and a support. The support is configured for placement on the eardrum to drive the eardrum. The transducer is coupled to the support at a first location to decrease occlusion and a second location to drive the eardrum. The transducer may comprise one or more of an electromagnetic balanced armature transducer, a piezoelectric transducer, a magnetostrictive transducer, a photostrictive transducer, or a coil and magnet. The device may find use with open canal hearing aids.
Abstract:
A device to transmit an audio signal to a user comprises a transducer and a support. The support is configured for placement on the eardrum to drive the eardrum. The transducer is coupled to the support at a first location to decrease occlusion and a second location to drive the eardrum. The transducer may comprise one or more of an electromagnetic balanced armature transducer, a piezoelectric transducer, a magnetostrictive transducer, a photostrictive transducer, or a coil and magnet. The device may find use with open canal hearing aids.
Abstract:
A device to transmit an audio signal to a user comprises a transducer and a support. The support is configured for placement on the eardrum to drive the eardrum. The transducer is coupled to the support at a first location to decrease occlusion and a second location to drive the eardrum. The transducer may comprise one or more of an electromagnetic balanced armature transducer, a piezoelectric transducer, a magnetostrictive transducer, a photostrictive transducer, or a coil and magnet. The device may find use with open canal hearing aids.
Abstract:
A processor comprises instructions to adjust a bias of an input signal in order to decrease a duty cycle of a pulse modulated optical signal. The bias can be increased, decreased, or maintained in response to one or more measured values of the signal. In many embodiments, a gain of the signal is adjusted with the bias in order to inhibit distortion. The bias can be adjusted slowly in order to inhibit audible noise, and the gain can be adjusted faster than the bias in order to inhibit clipping of the signal. In many embodiments, one or more of the bias or the gain is adjusted in response to a value of the signal traversing a threshold amount. The value may comprise a trough of the signal traversing the threshold.