摘要:
A package (1; 20) for protecting a device (2; 21) from ambient substances, the package comprising an enclosure surrounding the device (2; 21). The enclosure includes a multi-layer barrier (7; 24) and an internal substance binding member (14; 27) which is provided inside the enclosure to bind at least one of said ambient substances having penetrated the enclosure. The package (1; 20) further comprises an intermediate substance binding member (14; 29) which is provided between an inner (11a-b; 25) and an outer (16a-b; 28) barrier layer of the multi-layer barrier (7; 24) to bind a fraction of the substance having penetrated the outer barrier layer (16a-b; 28).
摘要:
An illumination device comprising an organic light-emitting diode (1) (OLED) having a light output that changes with use with an illumination/active area (2,3), where light is being emitted for an illumination purpose, a reference area (4) being substantially smaller than the illumination area (2), wherein the reference area (4) is an isolated area (4) not connected to the illumination/active area (2,3), a substrate, on which the reference area (4) and the illumination/active area (2,3) are located, a driver (5) connected to the illumination/active area (2,3) and the reference area (4), with a measurement circuit (6) detecting at least one active value of the illumination/active area (2,3) and at least one reference value of the reference area (4), a control circuit (7), which compares the active and the reference value and produces a correction signal in response thereto to compensate the changes in the light output of the illumination area (2), wherein the control circuit (7) calculates the correction signal for the illumination area (2) based on the active value and the reference value.
摘要:
The invention is directed to a nanosieve composite membrane, a method for preparing a nanosieve composite membrane, a roll-to-roll apparatus for carrying out the method, and a method for separating a feed flow with particulate matter. The nanosieve composite of the invention comprises an inorganic nanosieve layer supported on a porous polymer membrane substrate and a metallic adhesion layer or underlayer between the inorganic nanosieve layer and the polymer substrate, wherein said polymer membrane comprises an inorganic coating such that the polymeric support is sandwiched between the inorganic coating and the inorganic sieve layer, and wherein said inorganic nanosieve layer has an average pore diameter as determined by scanning electron microscopy of 200 nm or less.
摘要:
An organic light-emitting device is provided comprising a stack of layers including—an electro-optical layer structure (10) having a light emissive surface (12), —a light extraction structure (20) adjacent the light emissive surface, the light extraction structure has a nanostructured layer (22); and a backfill layer (24) comprising a material having a second index of refraction different from the first index of refraction, wherein the backfill layer (24) forms a planarizing layer over the nanostructured layer (22). The light emitting device includes a barrier film that comprises a first and a second inorganic layer (22, 26) and an organic layer (24) arranged between said inorganic layers. The one (22) of the inorganic layers of the barrier film closest to the electro-optical layer structure forms the nanostructured layer and the organic layer (24) between the inorganic layers forms the backfill layer.
摘要:
Organic electroluminescent device with a layer stack for emitting light through a top electrode includes a conductive foil having a carrier material with an upper and a lower side as a substrate and a first metal layer with a thickness resulting in a sheet resistance of less than 0.05 Ω/square on the upper side of the carrier material. The first metal layer act as a bottom electrode, and an organic layer stack is formed on top of the bottom-electrode for emitting light through the top electrode, which is formed on top of the organic layer stack. A partly transparent protection element covers at least the top electrode and the organic layer stack.
摘要:
A method for generating an electrode layer pattern in an organic functional device (101; 201) comprising a first transparent electrode layer (103; 203), a second electrode layer (104; 204) and an organic functional layer (102; 202) sandwiched between said first and second electrode layers (103, 104; 203, 204). The method comprises the steps of arranging (601) a laser (704; 804) to irradiate said organic functional device (701; 801) through said first transparent electrode layer (103; 203), selecting (602) a set of laser parameters in order to enable said laser (704; 804) to locally modify an electric conductivity of said second electrode layer (104; 204), and locally modifying, by said laser (704; 804) in accordance with said set of laser parameters, the electric conductivity of said second electrode layer (104; 204), thereby generating said electrode layer pattern.
摘要:
A voltage-operated layer arrangement having a substrate (1), a layered structure (2, 3, 4) that is applied to the substrate and comprises at least one continuous functional layer (2) that is arranged between a first (3) and a second (4) electrode, and a magnesium covering layer (15) that is applied to the second electrode (4) arranged on the side of the layered structure remote from the substrate, for the encapsulation of one or more particles (13).
摘要:
A solar module (and its fabrication method) is presented where a supporting substrate comprises a network of finger traces connected to bus bars. Photo-active layer portions and upper electrode layer portions are deposited on the substrate thereby forming a network of cells. The cells are connected in series by connecting the bus bar of one cell to the upper electrode layer of the adjacent cell, and the bus bars of two adjacent cells are coupled through a bypass element for protecting the cell array.
摘要:
An OLED device includes a substrate, electrode layers and organic layers arranged on the substrate and at least one metal foil on top thereof. The first metal foil is electrically connected to one of the electrode layers. An enclosure of at least the organic layers is provided by the metal foil in conjunction with a sealant 113. Thus, the metal foil plays a major role in forming an OLED package. In addition, the metal foil provides a low ohmic external connection, which for example can be used for applying a driving current to the OLED.
摘要:
The present invention relates to a planar electro-optic device and a method for producing the same. The device comprises an embedded woven structure of conductive wires (3), which adjoin the top surface of the substrate (7) at locations thereof. Different electrode layers may be connected to the wires at these locations. The wires may then be used e.g. to provide a uniform potential over an entire electrode surface, even if the electrode itself is very thin. A substrate of this kind may also be used for addressing purposes.