Abstract:
Provided herein is a Schottky diode including: a first semiconductor layer; an intermediate layer provided over the first semiconductor layer; a second semiconductor layer provided over the intermediate layer; an anode provided over the second semiconductor layer; and a cathode provided over the first semiconductor layer, wherein in a sectional view, a width of the second semiconductor layer is greater than a width of the intermediate layer.
Abstract:
A terahertz wave generating module includes a bidirectional light source which provides a first dual-mode beam in a first direction and a second dual-mode beam in a second direction; a forward lens unit which focuses the first dual-mode beam; a photomixer unit which converts the first dual-mode beam focused by the forward lens unit into a terahertz wave; a backward lens unit which focuses the second dual-mode beam; and a light output unit which uses the second dual-mode beam focused by the backward lens unit as a light signal, wherein the bidirectional light source, the forward lens unit, the photomixer unit, the backward lens unit, and the light output unit are integrated in a housing.
Abstract:
Disclosed is a horn antenna apparatus. The horn antenna apparatus includes a substrate; and a silicone antenna part bonded to the substrate and provided with a horn cavity having a radiating aperture part having one portion opened to the outside in a horizontal direction to a bonding surface. In accordance with the embodiment of the present invention, it is possible to easily implement the horn antenna apparatus capable of saving cost and providing the high gain using the photolithography and chemical etching method and to implement the terahertz transmitting and receiving module capable of saving cost and providing the high efficiency using the same.