Abstract:
An optical signal detecting apparatus and method. The optical signal detecting apparatus includes an optical demultiplexer configured to demultiplex an input optical signal into a first optical signal having a first band wavelength and a second optical signal having a second band wavelength, a first optical detector configured to detect the first optical signal, and a second optical detector configured to detect the second optical signal, and the optical demultiplexer, the first optical detector, and the second optical detector may be provided in a TO-CAN package.
Abstract:
A bidirectional optical transceiver module includes an optical Tx block including a light source configured to output an optical Tx signal; an optical Rx block provided in parallel to the optical Tx block and including a PD configured to receive an optical Rx signal; a wavelength distributor configured to change a travel path of the optical Tx signal; an optical filter provided on a predetermined area of a first surface of the wavelength distributor adjacent to the optical Tx or Rx block and configured to transmit the optical Rx signal and reflect the optical Tx signal; a first lens provided between the optical Tx block and the wavelength distributor; a second lens provided between the optical Rx block and the wavelength distributor; and a third lens configured to output the optical Tx signal to outside and output the optical Rx signal from the outside to the wavelength distributor.
Abstract:
An optical signal transmission apparatus generates a multi-level optical signal from a multi-level electric signal. The optical signal transmission apparatus detects, based on a supervisory signal generated from an optical signal, an electric-to-optical (E/O) conversion characteristic of an E/O converter configured to convert an electric signal into an optical signal. For example, when the E/O converter generates a multi-level optical signal from a multi-level electric signal based on a bias signal, the optical signal transmission apparatus determines a correspondence relationship between the bias signal and the optical signal. The optical signal transmission apparatus adjusts a use range of intensities of the bias signal based on the determined correspondence relationship so that the E/O converter may linearly operate.
Abstract:
An optical demultiplexing apparatus and method for multi-carrier distribution are provided. The optical demultiplexing apparatus may include a demultiplexer and a carrier distributor. The optical demultiplexing apparatus and method allow efficient demultiplexing of a multi-carrier light source by using a single demultiplexer even when a carrier spacing of the light source varies.
Abstract:
An optical coupling apparatus includes a shell in which a sleeve that guides optical coupling is inserted; a ferrule into which an optical fiber collimator stub is inserted, wherein the optical fiber collimator stub is integrated into one with an optical fiber inserted inside the sleeve and converts an optical signal into a collimated beam; and a housing that surrounds the ferrule.
Abstract:
Provided are a hybrid optical coupling module and a manufacturing method thereof.The hybrid optical coupling module includes an optical unit configured to include an optical transmission means that transmits an optical signal, and an array lens that is bonded at a point where the optical signal of the optical transmission means is output and focuses the output optical signal, and an electrical unit configured to receive the optical signal focused through the array lens and convert the received optical signal into an electrical signal. Here, an alignment mark is formed on the optical transmission means and the array lens so that the array lens is bonded at the point where the optical signal of the optical transmission means is output.
Abstract:
Disclosed herein is an optical transmitter for generating a vestigial sideband (VSB) optical signal. The optical transmitter includes: a modulator configured based on a photonic integrated chip (PIC); an optical fiber block; and a lensed thin film filter implemented between the modulator configured based on the PIC and the optical fiber block. The PIC includes at least one grating coupler, and the lensed thin film filter is disposed so that an angle of an optical signal emitted from a first grating coupler of the PIC coincides with an angle of incident (AOI) of the lensed thin film filter to design the first grating coupler and the lensed thin film filter.
Abstract:
Provided is an optical submodule which includes an optical transmission/reception module that optically couples an optical transmission signal and an optical reception signal into one optical fiber and a flexible printed circuit board (FPCB) mounted on the optical transmission/reception module that functions as an electrical signal interface with a main board, and an electrical signal line of an optical transmission channel for the optical transmission signal and an electrical signal line of an optical reception channel for the optical reception signal may be deployed on different sides of the FPCB.
Abstract:
An optical transmitter based on optical time division multiplexing is disclosed, which may solve the issues of complex structure and operation of a multilevel-OTDM-based optical transmitter while using a multilevel signal modulation format and OTDM technology that may increase the transmission rate of an optical transmitter with limited bandwidth.
Abstract:
An optical transmitting module includes: light sources configured to output optical signals, an optical multiplexer configured to multiplex the optical signals output from the light sources, a collimating lens configured to convert an optical signal output from the optical multiplexer to a form of parallel beam, a package inside which the light sources, the optical multiplexer, and the collimating lens are provided, and an optical isolator disposed on one inner surface of the package, in which the optical signals output from the light sources are multiplexed into a single optical signal through the optical multiplexer disposed inside the package, and the single optical signal passes through the collimating lens and is then optically coupled to an optical fiber stub in a receptacle through a focusing lens disposed outside the package to be output externally.