Abstract:
Disclosed is a printing apparatus for a 3D surface, which performs printing by ejecting a droplet onto a 3D surface and controlling an electric field on an impact path of the droplet, the printing apparatus including: a ejecting environment information provider configured to provide ejecting environment information between a nozzle and an impact point; and a controller configured to predict a result of printing on an actual substrate by accumulating previous printing results according to printing conditions and the ejecting environment information into a database, and perform the printing on the 3D surface while changing the printing conditions provided by the database based on the ejecting environment information provided by the ejecting environment information provider.
Abstract:
The invention provides a printer comprising an exchange station by which a printer module of a multifunction 3D printer can be attached and detached. The printer module is electromagnetically or mechanically attached to the exchange station to perform a printing operation. The multifunction 3D printer supports the printer module steadily and stably.
Abstract:
The present invention provides a droplet jetting apparatus which jets fluid in a droplet shape. The apparatus includes a main body (100), which has a chamber (110) for containing fluid. The main body further has at least one nozzle (120) which communicates with the chamber and jets a droplet onto a printable matter, and a first electrode (130) which is formed on the inner surface of at least one selected from between the nozzle and the chamber by patterning treatment to make electrical contact with the fluid. The apparatus further includes a second electrode (140), which is provided between the nozzle and the printable matter and has a through hole, through which the droplet is jetted from the nozzle onto the printable matter, a power supply (200) which supplies a voltage applied between the first electrode and the second electrode, and a control unit (300) which controls the power supply.
Abstract:
The present disclosure relates to a printing apparatus, and the printing apparatus according to the present disclosure includes an optical unit for expanding and displaying a hitting point of ink, from above a substrate; and a nozzle unit for ejecting the ink, wherein the nozzle unit includes a nozzle body that is obliquely disposed with respect to the substrate; and a nozzle that is coupled to the nozzle body, and has a flow path from which the ink is ejected, and has a tip that is bended towards the substrate.
Abstract:
Disclosed is an induced electrohydrodynamic (EHD) jet printing apparatus including: a nozzle configured to discharge a fed solution to an opposite substrate; a main electrode contactlessly isolated from the solution inside the nozzle by an insulator; and a voltage supplier configured to apply voltage to the main electrode.
Abstract:
Disclosed are a cartridge nozzle assembly and an apparatus for injecting ink including the cartridge nozzle assembly. In the ink injecting apparatus for forming a pattern by adhering the ink injected from a nozzle onto a substrate, the ink injecting apparatus includes a cartridge nozzle assembly, in a cartridge type, including a chamber sealingly accommodating the ink, and the nozzle for discharging the ink accommodated in the chamber; and a cartridge nozzle fixing member for replaceably fixing the cartridge nozzle assembly.
Abstract:
An ink jetting apparatus and method capable of jetting fine liquid drops is disclosed, according to one aspect of an embodiment, the ink jetting apparatus including a chamber for accommodating ink and a jetting unit for jetting ink, the ink jetting apparatus including a pressurizing unit configured to form a meniscus at a tip of the jetting unit by pressurizing the ink contained in the chamber; and a vibrating unit configured to excite and decompose the meniscus formed at the tip of the jetting unit by vibrating the jetting unit.