摘要:
A system and method for controlling a power converter is presented. An embodiment comprises an analog differential circuit connected to an analog-to-digital converter, and comparing the digital error signal to at least a first threshold value. If the digital error signal is less than the first threshold value, a pulse is generated to control the power converter. Another embodiment includes multiple thresholds that may be compared against the digital error signal.
摘要:
Circuit and method for a Class D amplifier. In one exemplary embodiment, an audio amplifier is disclosed. A closed loop configuration for driving high and low side driver transistors is provided, each circuit is compatible with advanced sub micron semiconductor processes. The analog time varying input is coupled to one input of a sigma delta analog to digital converter. A feedback signal from the output is also input to the analog to digital converter. A bit stream is output by the analog to digital converter. A decimator receives this bit stream and downconverts the samples to digital values at a lower frequency. A digital filter with adaptable coefficients is used to filter that signal and a digital pulse width modulator then develops an analog differential PWM signal. A predriver inputs the PWM signal and derives the output gating signals to control the high and low side drivers of a Class D amplifier.
摘要:
A DC to DC converter includes a switching circuit and a controller. The switching circuit includes an inductor coupled to first and second voltage supply nodes and to a plurality of output loads. The controller is configured to monitor a current through the inductor and to selectively couple the inductor to each of the plurality of output loads such that at least one of the following criteria is met: 1) an average current through the inductor is minimized for the particular output loads coupled to the switching circuit, or 2) minimize a number of times the switching circuit is switched during a charging period for the particular output loads coupled to the switching circuit.
摘要:
A level shifter receives an input voltage signal and produces an output voltage signal. The level shifter includes a first inverter, configured to operate at a potential difference between a first voltage V1 and a second voltage V2. The output from the invert is capacitively coupled to an input of a latch circuit via a capacitor. The capacitor has a first terminal connected to the output terminal of the first inverter, and further has a second terminal. The level shifter has a resistor connected to a third voltage V3 and to the capacitor for tying the input to the latch circuit to a desired voltage. The latch circuit is configured to operate at a potential difference between a fourth voltage V4 and a fifth voltage V5. The latch has an input node connected to the resistor and the capacitor, and further has an output node connected to an output node of the level shifter.
摘要:
A regulator control circuit includes a high side driver that is configured to receive a supply voltage. A capacitor is configured to store charges. A first transistor is coupled between the capacitor at a first node and a gate of a high side driver at a second node. The first node is capable of being boosted to a voltage to operate the first transistor at a saturation mode for a charge sharing between the first node and the second node so as to substantially turn on the high side driver.
摘要:
A digital controlled battery charger comprises a power converter, a voltage sensor, a current senor, a mode selector and a digital controller. The voltage sensor and current sensor detect the voltage of a rechargeable battery and the current flowing through the rechargeable battery respectively. The mode selector selects a feedback signal from either the output of the voltage sensor or the output of the current sensor. The digital controller receives the selected feedback signal and generates a pulse width modulated signal for the power converter. Additionally, the digital controller is capable of dynamically adjusting its coefficients so that the control loop can maintain a stable system when the battery charger operates in different battery charging phases.
摘要:
A DC to DC converter includes a switching circuit and a controller. The switching circuit includes an inductor coupled to first and second voltage supply nodes and to a plurality of output loads. The controller is configured to monitor a current through the inductor and to selectively couple the inductor to each of the plurality of output loads such that at least one of the following criteria is met: 1) an average current through the inductor is minimized for the particular output loads coupled to the switching circuit, or 2) minimize a number of times the switching circuit is switched during a charging period for the particular output loads coupled to the switching circuit.
摘要:
Embodiments of the invention are related to LDO regulators. In an embodiment, an amplifier drives the gate of a master source follower and of at least one slave source follower to form an LDO regulator. In an alternative embodiment, a charge pump drives the master source follower to form the regulator. Additional slave source followers may be used in conjunction with the charge pump and the master source follower to improve the regulator performance. Other embodiments are also disclosed.
摘要:
Circuit and method for a Class D amplifier. In one exemplary embodiment, an audio amplifier is disclosed. A closed loop configuration for driving high and low side driver transistors is provided, each circuit is compatible with advanced sub micron semiconductor processes. The analog time varying input is coupled to one input of a sigma delta analog to digital converter. A feedback signal from the output is also input to the analog to digital converter. A bit stream is output by the analog to digital converter. A decimator receives this bit stream and downconverts the samples to digital values at a lower frequency. A digital filter with adaptable coefficients is used to filter that signal and a digital pulse width modulator then develops an analog differential PWM signal. A predriver inputs the PWM signal and derives the output gating signals to control the high and low side drivers of a Class D amplifier.
摘要:
An amplifier drives the gate of a master source follower and of at least one slave source follower to form a low-dropout (LDO) regulator. Alternatively, a charge pump drives the master source follower to form the regulator. Additional slave source followers may be used in conjunction with the charge pump and the master source follower to improve the regulator performance.