摘要:
A graphics processor capable of parallel scheduling and execution of multiple threads, and techniques for achieving parallel scheduling and execution, are described. The graphics processor may include multiple hardware units and a scheduler. The hardware units are operable in parallel, with each hardware unit supporting a respective set of operations. The hardware units may include an ALU core, an elementary function core, a logic core, a texture sampler, a load control unit, some other hardware unit, or a combination thereof. The scheduler dispatches instructions for multiple threads to the hardware units concurrently. The graphics processor may further include an instruction cache to store instructions for threads and register banks to store data. The instruction cache and register banks may be shared by the hardware units.
摘要:
This disclosure describes techniques of loading batch commands into a graphics processing unit (GPU). As described herein, a GPU driver for the GPU identifies one or more graphics processing objects to be used by the GPU in order to render a batch of graphics primitives. The GPU driver may insert indexes associated with the identified graphics processing objects into a batch command. The GPU driver may then issue the batch command to the GPU. The GPU may use the indexes in the batch command to retrieve the graphics processing objects from memory. After retrieving the graphics processing objects from memory, the GPU may use the graphics processing objects to render the batch of graphics primitives.
摘要:
A computer addressing mode and memory access method rely on a memory segment identifier and a memory segment mask for indicating memory locations. In this addressing mode, a processor receives an instruction comprising the memory segment identifier and memory segment mask. The processor employs a two-level address decoding scheme to access individual memory locations. Under this decoding scheme, the processor decodes the memory segment identifier to select a particular memory segment. Each memory segment includes a predefined number of memory locations. The processor selects memory locations within the memory segment based on mask bits set in the memory segment mask. The disclosed addressing mode is advantageous because it allows non-consecutive memory locations to be efficiently accessed.
摘要:
A device includes a multimedia processor that can concurrently support multiple applications for various types of multimedia such as graphics, audio, video, camera, games, etc. The multimedia processor includes configurable storage resources to store instructions, data, and state information for the applications and assignable processing units to perform various types of processing for the applications. The configurable storage resources may include an instruction cache to store instructions for the applications, register banks to store data for the applications, context registers to store state information for threads of the applications, etc. The processing units may include an arithmetic logic unit (ALU) core, an elementary function core, a logic core, a texture sampler, a load control unit, a flow controller, etc. The multimedia processor allocates a configurable portion of the storage resources to each application and dynamically assigns the processing units to the applications as requested by these applications.
摘要:
The present disclosure includes system and method of mapping shader variables into physical registers. In an embodiment, a graphics processing unit (GPU) and a memory coupled to the GPU are disclosed. The memory includes a processor readable data file that has a register file portion. The register file portion has a rectangular structure including a plurality of data items. At least two of the plurality of data items corresponding to data elements of a shader program. The data elements have different data storage types.
摘要:
Configuration information is used to make a determination to bypass fragment shading by a shader unit of a graphics processing unit, the shader unit capable of performing both vertex shading and fragment shader. Based on the determination, the shader unit performs vertex shading and bypasses fragment shading. A processing element other than the shader unit, such as a pixel blender, can be used to perform some fragment shading. Power is managed to “turn off” power to unused components in a case that fragment shading is bypassed. For example, power can be turned off to a number of arithmetic logic units, the shader unit using the reduced number of arithmetic logic unit to perform vertex shading. At least one register bank of the shader unit can be used as a FIFO buffer storing pixel attribute data for use, with texture data, to fragment shading operations by another processing element.
摘要:
A graphics processing unit (GPU) efficiently performs 3-dimensional (3-D) clipping using processing units used for other graphics functions. The GPU includes first and second hardware units and at least one buffer. The first hardware unit performs 3-D clipping of primitives using a first processing unit used for a first graphics function, e.g., an ALU used for triangle setup, depth gradient setup, etc. The first hardware unit may perform 3-D clipping by (a) computing clip codes for each vertex of each primitive, (b) determining whether to pass, discard or clip each primitive based on the clip codes for all vertices of the primitive, and (c) clipping each primitive to be clipped against clipping planes. The second hardware unit computes attribute component values for new vertices resulting from the 3-D clipping, e.g., using an ALU used for attribute gradient setup, attribute interpolation, etc. The buffer(s) store intermediate results of the 3-D clipping.
摘要:
A thread scheduler includes context units for managing the execution of threads where each context unit includes a load reference counter for maintaining a counter value indicative of a difference between a number of data requests and a number of data returns associated with the particular context unit. A context controller of the thread context unit is configured to refrain from forwarding an instruction of a thread when the counter value is nonzero and the instruction includes a data dependency indicator indicating the instruction requires data returned by a previous instruction.
摘要:
Techniques to efficiently handle relative addressing are described. In one design, a processor includes an address generator and a storage unit. The address generator receives a relative address comprised of a base address and an offset, obtains a base value for the base address, sums the base value with the offset, and provides an absolute address corresponding to the relative address. The storage unit receives the base address and provides the base value to the address generator. The storage unit also receives the absolute address and provides data at this address. The address generator may derive the absolute address in a first clock cycle of a memory access. The storage unit may provide the data in a second clock cycle of the memory access. The storage unit may have multiple (e.g., two) read ports to support concurrent address generation and data retrieval.
摘要:
Techniques are described for processing computerized images with a graphics processing unit (GPU) using an extended vertex cache. The techniques include creating an extended vertex cache coupled to a GPU pipeline to reduce an amount of data passing through the GPU pipeline. The GPU pipeline receives an image geometry for an image, and stores attributes for vertices within the image geometry in the extended vertex cache. The GPU pipeline only passes vertex coordinates that identify the vertices and vertex cache index values that indicate storage locations of the attributes for each of the vertices in the extended vertex cache to other processing stages along the GPU pipeline. The techniques described herein defer the setup of attribute gradients to just before attribute interpolation in the GPU pipeline. The vertex attributes may be retrieved from the extended vertex cache for attribute gradient setup just before attribute interpolation in the GPU pipeline.