Abstract:
The present disclosure is drawn to, among other things, a method of fabricating an integrated circuit device having a magnetoresistive device. In some aspects, the method includes forming the magnetoresistive device on a first contact of a substrate, wherein the magnetoresistive device includes a fixed magnetic region and a free magnetic region separated by an intermediate region; depositing a first dielectric material over the magnetoresistive device; depositing a second dielectric material over the first dielectric material; polishing a surface of the second dielectric material; forming a first cavity through the polished surface of the second dielectric material to expose a surface of the magnetoresistive device; and depositing an electrically conductive material in the first cavity to form a via.
Abstract:
A magnetoresistive-based device and method of manufacturing a magnetoresistive-based device using one or more hard masks. The process of manufacture, in one embodiment, includes patterning a mask over a selected portion of the third layer of ferromagnetic material, wherein the mask is a metal hard mask. Thereafter, etching through the third layer of ferromagnetic material to provide sidewalls of the second synthetic antiferromagnetic structure, through the second tunnel barrier layer to form a second tunnel barrier and provide sidewalls thereof and the second layer of ferromagnetic material to provide sidewalls thereof. Thereafter, etching, through the first tunnel barrier layer to form a first tunnel barrier to provide sidewalls thereof and etching the first layer of ferromagnetic material to provide sidewalls thereof. The process may then include oxidizing the sidewalls of (i) the first tunnel barrier and (ii) the first layer of ferromagnetic material. Thereafter, the metal hard mask may be connected to an electrical conductor.
Abstract:
Encapsulation of the magnetoresistive device after formation protects the sidewalls of the magnetoresistive device from degradation during subsequent deposition of interlayer dielectric material. The encapsulation also helps prevent short circuits between the top electrode of the magnetoresistive device and underlying layers within the magnetoresistive device. The encapsulation can be accomplished by depositing a layer of encapsulating material after device formation, where an etch back operation selectively removes the portions of the layer of encapsulating material other than the material on the sidewalls of the magnetoresistive device.
Abstract:
A magnetoresistive-based device and method of manufacturing a magnetoresistive-based device using one or more hard masks. The process of manufacture, in one embodiment, includes patterning a mask over a selected portion of the third layer of ferromagnetic material, wherein the mask is a metal hard mask. Thereafter, etching through the third layer of ferromagnetic material to provide sidewalls of the second synthetic antiferromagnetic structure, through the second tunnel barrier layer to form a second tunnel barrier and provide sidewalls thereof and the second layer of ferromagnetic material to provide sidewalls thereof. Thereafter, etching, through the first tunnel barrier layer to form a first tunnel barrier to provide sidewalls thereof and etching the first layer of ferromagnetic material to provide sidewalls thereof. The process may then include oxidizing the sidewalls of (i) the first tunnel barrier and (ii) the first layer of ferromagnetic material. Thereafter, the metal hard mask may be connected to an electrical conductor.
Abstract:
A two-step etching process is used to form the top electrode for a magnetoresistive device. The etching chemistries are different for each of the two etching steps. The first chemistry used to etch the top portion of the electrode is more selective with respect to the conductive material of the top electrode, thereby reducing unwanted erosion of the photoresist and hard mask layers. The second chemistry is less corrosive than the first chemistry and does not damage the layers underlying the top electrode, such as those included in the magnetic tunnel junction.
Abstract:
A method of manufacturing a magnetoresistive stack/structure comprising etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer; depositing a first encapsulation layer on the sidewalls of the second magnetic region and over the dielectric layer; etching (i) the first encapsulation layer which is disposed over the exposed surface of the dielectric layer and (ii) re-deposited material disposed on the dielectric layer, wherein, thereafter a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region. The method further includes depositing a second encapsulation layer: (i) on the first encapsulation layer disposed on the sidewalls of the second magnetic region and (ii) over the exposed surface of the dielectric layer; and etching the remaining layers of the stack/structure (via one or more etch processes).
Abstract:
A magnetoresistive-based device and method of manufacturing a magnetoresistive-based device using a plurality of masks. The magnetoresistive-based device includes magnetic material layers formed between a first electrically conductive layer and a second electrically conductive layer, the magnetic materials layers including a tunnel barrier layer formed between a first magnetic materials layer and a second magnetic materials layer. In one embodiment, the method may include removing the first electrically conductive layer and the first magnetic materials layer unprotected by a first mask, to form a first electrode and a first magnetic materials, respectively, and removing the tunnel barrier layer and the second magnetic materials layer unprotected by a second mask to form a tunnel barrier and second magnetic materials, and the second electrically conductive layer unprotected by the second mask to form, and a second electrode.
Abstract:
Isolation of magnetic layers in the magnetoresistive stack is achieved by passivation of sidewalls of the magnetic layers or deposition of a thin film of non-magnetic dielectric material on the sidewalls prior to subsequent etching steps. Etching the magnetic layers using a non-reactive gas further prevents degradation of the sidewalls.
Abstract:
A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
Abstract:
A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes etching through a first portion of the magnetoresistive stack using a first etch process to form one or more sidewalls. At least a portion of the sidewalls includes redeposited material after the etching. The method also includes modifying at least a portion of the redeposited material on the sidewalls, and etching through a second portion of the magnetoresistive stack after the modifying step. The magnetoresistive stack may include a first magnetic region, an intermediate region disposed over the first magnetic region, and a second magnetic region disposed over the intermediate region.