Abstract:
A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes etching through a first portion of the magnetoresistive stack using a first etch process to form one or more sidewalls. At least a portion of the sidewalls includes redeposited material after the etching. The method also includes modifying at least a portion of the redeposited material on the sidewalls, and etching through a second portion of the magnetoresistive stack after the modifying step. The magnetoresistive stack may include a first magnetic region, an intermediate region disposed over the first magnetic region, and a second magnetic region disposed over the intermediate region.
Abstract:
A magnetoresistive device may include an intermediate region positioned between a magnetically fixed region and a magnetically free region, and spin Hall channel region extending around a sidewall of at least the magnetically free region. An insulator region may extend around a portion of the sidewall such that the insulator region contacts a first portion of the sidewall and the spin Hall channel region contacts a second portion of the sidewall.
Abstract:
A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
Abstract:
Methods for manufacturing magnetoresistive devices are presented in which isolation of magnetic layers in the magnetoresistive stack is achieved by oxidizing exposed sidewalls of the magnetic layers and then depositing additional encapsulating material prior to subsequent etching steps. Etching the magnetic layers using a non-reactive gas further prevents degradation of the sidewalls.
Abstract:
In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
Abstract:
In forming a top electrode for a magnetoresistive device, photoresist used in patterning the electrode is stripped using a non-reactive stripping process. Such a non-reactive stripping process uses water vapor or some other non-oxidizing gas that also passivates exposed portions the magnetoresistive device. In such magnetoresistive devices, a non-reactive spacer layer is included that helps prevent diffusion between layers in the magnetoresistive device, where the non-reactive nature of the spacer layer prevents sidewall roughness that can interfere with accurate formation of the lower portions of the magnetoresistive device.
Abstract:
Isolation of magnetic layers in the magnetoresistive stack is achieved by passivation of sidewalls of the magnetic layers or deposition of a thin film of non-magnetic dielectric material on the sidewalls prior to subsequent etching steps. Etching the magnetic layers using a non-reactive gas further prevents degradation of the sidewalls.
Abstract:
Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
Abstract:
A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes etching through a first portion of the magnetoresistive stack using a first etch process to form one or more sidewalls. At least a portion of the sidewalls includes redeposited material after the etching. The method also includes modifying at least a portion of the redeposited material on the sidewalls, and etching through a second portion of the magnetoresistive stack after the modifying step. The magnetoresistive stack may include a first magnetic region, an intermediate region disposed over the first magnetic region, and a second magnetic region disposed over the intermediate region.
Abstract:
Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.