Abstract:
A 3D sensor system with a mounting arrangement is provided. The system includes a 3D sensor that measures 3D coordinates of a surface, the 3D sensor having a body with a slot disposed in a side, the slot further having a recess centrally disposed thereon. One or more slot nuts are disposed in the slot. A mounting bracket is provided having a pair of keystone members and a dowel pin disposed therebetween, the keystone members being disposed in the slot and the dowel pin being disposed in the recess, the mounting bracket having a plurality of holes aligned with the slot. One or more fasteners are provided that extend through the plurality holes and engage the one or more slot nuts to couple the mounting bracket to the 3D sensor.
Abstract:
A three-dimensional (3D) scanner having two cameras and a projector is detachably coupled to a device selected from the group consisting of: an articulated arm coordinate measuring machine, a camera assembly, a six degree-of-freedom (six-DOF) tracker target assembly, and a six-DOF light point target assembly.
Abstract:
An unmanned aerial vehicle (UAV) such as a drone, quadcopter or octocopter having a projector on board for projecting information into physical space such as onto objects or locations while the UAV is in flight, and further with the position and orientation (i.e., the six degrees of freedom) of the UAV in flight being accurately tracked and controlled from the ground, e.g., by a laser tracker or a camera bar, thereby leading to a relatively more stable flight of the UAV.
Abstract:
A computer numerical control (CNC) machining center is provided. The CNC machining center includes a spindle that receives a cutting tool. A work surface is operably arranged adjacent the spindle. A non-contact three-dimensional (3D) measurement device is operably coupled to the tool mount, the 3D measurement device including a projector and at least one device camera, the at least one camera being arranged to receive light from the light source that is reflected off of a surface. A plurality of targets is provided with at least one of the targets coupled to the 3D measurement device. At least two photogrammetry cameras are provided having a orientation and a field of view to acquire images of the targets. A controller is coupled for communication to the 3D measurement device and the at least two cameras, the controller determining the position of the 3D measurement device within the machining center during operation.
Abstract:
A three-dimensional (3D) scanner having two cameras and a projector is detachably coupled to a device selected from the group consisting of: an articulated arm coordinate measuring machine, a camera assembly, a six degree-of-freedom (six-DOF) tracker target assembly, and a six-DOF light point target assembly.
Abstract:
Embodiments of the present invention relate to a measurement machine for measuring an object, and more particularly to a measurement machine such as a portable articulated arm coordinate measuring machine or a laser tracker that measures an object according to a measurement or inspection plan that is identified by a machine readable information symbol located on the object to be measured or on a drawing (e.g., a CAD drawing) of the object.
Abstract:
A three-dimensional (3D) scanner having two cameras and a projector is detachably coupled to a device selected from the group consisting of: an articulated arm coordinate measuring machine, a camera assembly, a six degree-of-freedom (six-DOF) tracker target assembly, and a six-DOF light point target assembly.
Abstract:
A computer numerical control (CNC) machining center is provided. The CNC machining center includes a spindle that receives a cutting tool. A work surface is operably arranged adjacent the spindle. A non-contact three-dimensional (3D) measurement device is operably coupled to the tool mount, the 3D measurement device including a projector and at least one device camera, the at least one camera being arranged to receive light from the light source that is reflected off of a surface. A plurality of targets is provided with at least one of the targets coupled to the 3D measurement device. At least two photogrammetry cameras are provided having a orientation and a field of view to acquire images of the targets. A controller is coupled for communication to the 3D measurement device and the at least two cameras, the controller determining the position of the 3D measurement device within the machining center during operation.
Abstract:
A computer numerical control (CNC) machining center is provided. The CNC machining center includes a spindle configured to receive a cutting tool having a tool mount. A tool magazine is provided having a plurality of holders, each holder configured to receive a tool having the tool mount. A primary induction power supply operably coupled to the spindle. A non-contact three-dimensional (3D) measurement device having the tool mount is provided. The 3D measurement device is movable between one of the tool magazine holders and the spindle. The 3D measurement device having a secondary induction power supply configured to generate electrical power to operate the 3D measurement device when the 3D measurement device is coupled to the spindle.
Abstract:
A triangulation scanner having an enclosure, a projector coupled to the enclosure and configured to emit a first light, and three cameras also coupled to the enclosure. The scanner further includes at least one processor to determine the three-dimensional coordinates in a local frame of reference based at least in part on receiving the first light.