Abstract:
A fuel cell includes a plurality of unit cells disposed in a stack. Each unit cell includes a membrane electrode assembly (MEA) having an anode and a cathode and a bipolar plate having a cathode side defining a recessed pocket in fluid communication with an air port, an anode side, and coolant channels between the cathode and anode sides. The bipolar plate is disposed against the MEA such that the cathode is disposed over the pocket. A flow guide is disposed in the pocket with a front side facing the MEA and a back side facing a bottom of the pocket. The flow guide has a plurality of embossments.
Abstract:
A bipolar plate for a fuel cell includes an anode plate and a cathode plate. The anode plate has hydrogen flow channels on a first side of the anode plate and coolant channels on a second side of the anode plate. The cathode plate has a first side disposed against the second side of the anode plate to cover the coolant channels and has a second side defining a recessed pocket configured to receive a stream of air. A flow guide is disposed in the pocket such that an inlet manifold is formed along a first edge of the flow guide and an outlet manifold is formed along a second edge of the flow guide. The flow guide defines channels extending from the inlet manifold to the outlet manifold. A plurality of openings is defined by through the flow guide.
Abstract:
A fuel cell system includes a plurality of fuel cells. Each of the fuel cells may include a current bypass device that is configured to flow a current responsive to an anode potential exceeding a cathode potential to prevent carbon corrosion within the fuel cell.
Abstract:
Methods of forming a high surface area compacted MOF powder are disclosed, as well as MOF pellets formed thereby. The method may include synthesizing a metal organic framework (MOF) powder using a first solvent, exchanging the first solvent with a second solvent such that pores of the MOF powder are at least 10% filled with the second solvent, compacting the MOF powder having pores at least 10% filled with the second solvent into a pellet, and desolvating the compacted pellet to remove the second solvent. The pellet may maintain a specific surface area after compacting that is at least 80% its initial specific surface area. Compacting the MOF powder with a solvent at least partially filling its pores may prevent or reduce crushing of the MOF pore structure and maintain surface area, for example, for hydrogen or natural gas storage.
Abstract:
In one or more embodiments, an electrochemical device includes a substrate having a substrate surface; an amorphous metal oxide layer supported on the substrate surface; and a noble metal catalyst supported on the amorphous metal oxide layer to form a catalyst layer. The amorphous metal oxide layer may contact only 25 to 75 percent of the substrate surface. The amorphous metal oxide layer may include less than 10 weight percent of crystalline metal oxide. In certain instances, the amorphous metal oxide layer is substantially free of crystalline metal oxide.
Abstract:
In one or more embodiments, an electrochemical device includes a catalyst promoter including an amorphous metal oxide, the amorphous metal oxide being of an amount greater than 50 percent by weight of the total weight of the substrate, and a substrate including graphene and supporting the substrate.
Abstract:
A fuel cell includes a plurality of unit cells disposed in a stack. Each unit cell includes a membrane electrode assembly (MEA) having an anode and a cathode and a bipolar plate having a cathode side defining a recessed pocket in fluid communication with an air port, an anode side, and coolant channels between the cathode and anode sides. The bipolar plate is disposed against the MEA such that the cathode is disposed over the pocket. A flow guide is disposed in the pocket with a front side facing the MEA and a back side facing a bottom of the pocket. The flow guide has a plurality of embossments.
Abstract:
An electrode for a fuel cell includes a catalyst layer adjacent to a gas diffusion layer and a proton exchange membrane, and ionomer-free active metal-loaded carbon nanostructures and active metal-free ionomer-coated carbon nanostructures arranged to define pores therebetween to facilitate transport of reactant gases and product water in the fuel cell.
Abstract:
The present disclosure includes fuel cell bipolar plates and methods of forming a radical scavenging coating on a bipolar plate. The bipolar plates may include a steel substrate, a middle layer contacting the steel substrate and including a bulk material and a radical scavenging material, and a conductive layer contacting the middle layer. The radical scavenging material may include cerium, such as metallic cerium or a cerium oxide. The conductive layer may include a conductive carbon, such as a diamond-like carbon or coating (DLC). The radical scavenging material may comprise 0.1 wt % to 30 wt % of the middle layer. The middle layer may be deposited using PVD, and the radical scavenging material may be doped into the middle layer, for example, by co-sputtering it with the bulk material of the middle layer.
Abstract:
An electrode for a fuel cell includes a catalyst layer adjacent to a gas diffusion layer and a proton exchange membrane, and ionomer-free active metal-loaded carbon nanostructures and active metal-free ionomer-coated carbon nanostructures arranged to define pores therebetween to facilitate transport of reactant gases and product water in the fuel cell.