Abstract:
The invention relates to processes for reducing emissions of hydrochloric acid (HCl) to moderate pollution to the environment and achieve regulatory compliance in a cost-effective manner. In embodiments described below, the invention deals with reducing HCl and does not require a sorbent but utilizes an aqueous composition we term a copper-bearing chloride remediator (CBCR). In one general case, the CBCR can be a member selected from the group consisting of compositions defined by the formula Cu(NH3)x(carbonate or lower carboxylate)y, wherein the lower carboxylate is selected from the group consisting of formate, acetate and propionate, x is an integer from 0 to 4, y is an integer from 0 to 2, and x+y is equal to or greater than 1.
Abstract:
The invention relates to processes for reducing emissions of hydrochloric acid (HCl) to moderate pollution to the environment and achieve regulatory compliance in a cost-effective manner. In embodiments described below, the invention deals with reducing HCl and does not require a sorbent but utilizes an aqueous composition we term a copper-bearing chloride remediator (CBCR). In one general case, the CBCR can be a member selected from the group consisting of compositions defined by the formula Cu(NH3)x(carbonate or lower carboxylate)y, wherein the lower carboxylate is selected from the group consisting of formate, acetate and propionate, x is an integer from 0 to 4, y is an integer from 0 to 2, and x+y is equal to or greater than 1.
Abstract:
The description relates to reducing hydrochloric acid in cement kilns. In one aspect, an aqueous copper-based chloride remediator is introduced into contact with combustion gases from a cement kiln. Injection is made into a defined introduction zone under conditions effective for HCl emissions control wherein the temperature is within the range of from 300° F. to 800° F., preferably from 550° F. to 750° F. The resulting gases are discharged from the defined zone following sufficient reaction time to reduce the HCl concentration in the gases.
Abstract:
Dry processes, apparatus, compositions and systems are provided for reducing emissions of sulfur oxides, and sulfur dioxide in particular, and/or HCl in a process employing a combination of a dolomite hydrate sorbent and a sorbent doping agent administered to achieve coverage of a three-dimensional cross section of a passage carrying SOx and/or HCl —containing gases with a short but effective residence time at a temperature effective to provide significant sulfur dioxide and/or HCl reductions with high rates of reaction and sorbent utilization. The once-through, dry process can advantageously introduce the sorbent and sorbent doping agent dry or preferably as a slurry to enable uniform treatment. Preferred sorbent doping agents include water-soluble or water-dispersible copper and/or iron compositions which can be heated to an active form in situ by the flue gases being treated.
Abstract:
Dry processes, apparatus, compositions and systems are provided for reducing emissions of sulfur oxides, and sulfur dioxide in particular, and/or HCl in a process employing a combination of a dolomite hydrate sorbent and a sorbent doping agent administered to achieve coverage of a three-dimensional cross section of a passage carrying SOx and/or HCl-containing gases with a short but effective residence time at a temperature effective to provide significant sulfur dioxide and/or HCl reductions with high rates of reaction and sorbent utilization. The once-through, dry process can advantageously introduce the sorbent and sorbent doping agent dry or preferably as a slurry to enable uniform treatment. Preferred sorbent doping agents include water-soluble or water-dispersible copper and/or iron compositions which can be heated to an active form in situ by the flue gases being treated.