Abstract:
A vehicle control system includes one or more processors configured to assign plural vehicles to different groups in one or more vehicle systems for travel along one or more routes. The one or more processors also are configured to determine trip plans for the different groups. The trip plans designate different operational settings of the vehicles in the different groups at different locations along one or more routes during movement of the one or more vehicle systems along the one or more routes. The one or more processors also are configured to modify one or more of the groups to which the vehicles are assigned or the operational settings for the vehicles in one or more of the vehicle systems based on a movement parameter of one or more of the vehicle systems. The trip plans for the different groups of the vehicles are interdependent upon each other.
Abstract:
A system and method for determining dynamically changing distributions of vehicles in a vehicle system are disclosed. The system and method determine handling parameters of the vehicle system. The handling parameters are determined for different distributions of the vehicles among different groups at different potential change points along a route. The system and method also determine whether to change the distributions at potential change points based on the handling parameters. Based on determining that the distributions are to change, a selected sequence of changes to the distributions is determined at one or more of the potential change points along the route. Change indices are generated based on the selected sequence. The change indices designate times and/or the one or more potential change points at which the distributions changes. The vehicles included in a common group have common designated operational settings while the vehicles are in the common group.
Abstract:
A method includes identifying power outputs to be provided by propulsion-generating vehicles of a vehicle system for different locations along a route and calculating handling parameters of the vehicle system at the locations along the route. The handling parameters are representative of at least one of coupler forces, coupler energies, relative vehicle velocities, or natural forces exerted on the vehicle system. The method also includes determining asynchronous operational settings for the propulsion-generating vehicles at the locations. The asynchronous operational settings represent different operational settings that cause the propulsion-generating vehicles to provide at least the power outputs at the locations while changing the handling parameters of the vehicle system to designated values at the locations. The method further includes communicating the asynchronous operational settings to the propulsion-generating vehicles in order to cause the propulsion-generating vehicles to implement the asynchronous operational settings at the different locations.