Abstract:
A method for reactive power generation for a wind turbine generator includes receiving a voltage command signal, and adjusting this voltage command signal as a function of the wind turbine reactive power. A reactive current is determined for the wind turbine generator in response to the adjusted voltage command signal and is transmitted to a controller of the wind turbine generator for generating a real and reactive power based on the reactive current command.
Abstract:
A method for providing grid-forming control of a double-fed wind turbine generator connected to an electrical grid includes receiving at least one control signal associated with a desired total power output or a total current output of the double-fed wind turbine generator. The method also includes determining a contribution of at least one of power or current from the line-side converter to the desired total power output or to the total current output of the double-fed wind turbine generator, respectively. The method also includes determining a control command for a stator of the double-fed wind turbine generator based on the contribution of at least one of the power or the current from the line-side converter and the at least one control signal. Further, the method includes using the control command to regulate at least one of power or current in the stator of the double-fed wind-turbine generator.
Abstract:
A system and method for mitigating overvoltage on a DC link of a power converter of an electrical power system connected to a power grid includes receiving a voltage feedback signal from the DC link for a predetermined time period. The method also includes determining a rate of change of the voltage feedback signal during the predetermined time period. Further, the method includes predicting a future voltage value on the DC link as a function of the voltage feedback signal and the rate of change of the voltage feedback signal. Moreover, the method includes controlling the electrical power system based on the future voltage value.
Abstract:
Systems and methods for controlling a power converter in a wind turbine system are provided. The wind turbine system can include a generator and a power converter. The power converter can include a plurality of switching devices and a current damping module. A method can include determining, by a control device, a flux magnitude of an air-gap between a rotor and a stator in the generator. The method can further include determining, by the control device, an orientation adjustment reference signal for the current damping module based at least in part on the flux magnitude. The method can further include controlling, by the control device, the power converter based at least in part on the orientation adjustment reference signal.
Abstract:
A method for reducing a delay between a power command and actual power of a power system includes receiving, via a power angle estimator, a power command of the power system. The method also includes receiving, via the power angle estimator, one or more grid conditions of the power grid. Further, the method includes estimating, via the power angle estimator, a power angle signal across the power system based on the power command and the one or more grid conditions. Moreover, the method includes receiving, via a phase locked loop (PLL), the estimated power angle signal. In addition, the method includes generating, via the PLL, a PLL phase angle signal based, at least in part, on the estimated power angle signal. Thus, the method further includes controlling, via a converter controller, a power conversion assembly of the power system based on the PLL phase angle signal.
Abstract:
The present disclosure is directed to a system and method for stabilizing disconnection of one or more wind turbines in a wind farm connected to a power grid during one or more grid contingency events. The method includes determining, via one or more processors, a phase-locked loop error signal for each of the wind turbines based on sensor signals from the plurality of wind turbines. The method also includes comparing the phase-locked loop error signal of each wind turbine to at least one predetermined threshold for a predetermined time period. If the phase-locked loop error signal for one or more of the wind turbines comprises a positive value that exceeds the predetermined threshold for the predetermined time period, then the method includes generating a trip signal for the one or more of the wind turbines based on the phase-locked loop error signal, the positive value being indicative of system instability, wherein the trip signal is configured to disconnect the one or more wind turbines from the power grid.
Abstract:
A system and associated method for reactive power generation for a wind turbine generator includes receiving a higher-than-generator level voltage command signal. A reactive current is determined for the wind turbine generator in response to the voltage command signal and is transmitted to a controller of the wind turbine generator for generating a real and reactive power based on the reactive current command. A trim value may be generated and applied to the voltage command signal.
Abstract:
A method for reactive power generation for a wind turbine generator includes receiving a voltage command signal, and adjusting this voltage command signal as a function of the wind turbine reactive power. A reactive current is determined for the wind turbine generator in response to the adjusted voltage command signal and is transmitted to a controller of the wind turbine generator for generating a real and reactive power based on the reactive current command.
Abstract:
A method for controlling operation of a wind turbine included within a power generation and delivery system is described. The method includes receiving, by a controller, a power command signal, wherein the power command signal indicates recovery from the grid contingency event; and increasing, in a non-uniform manner, power injected into a grid by a power conversion assembly in response to the power command signal wherein the controller controls the power conversion assembly.
Abstract:
A method for simulating electric power grid conditions includes accessing, with a computing system, a reference voltage value associated with an electric power grid being simulated. Furthermore, the method includes modifying, with the computing system, the reference voltage value based on a virtual impedance associated with a condition on the electric power grid being simulated. Additionally, the method includes applying, with the computing system, a phase and magnitude compensation to the modified reference voltage value. Moreover, the method includes controlling, with the computing system, an operation of a grid simulator such that the grid simulator generates an output signal based on the modified voltage value after the phase and magnitude compensation has been applied, the output signal being applied to a power converter being tested to simulate the condition.