Abstract:
Provided herein are certain sulfone polymers having zwitterionic functionality and blends thereof which are suitable for preparation of flat sheet membranes. The polymer blends comprise a blend of a first polymer comprising a sulfone polymer having zwitterionic functionality and a second polymer comprising a sulfone polymer.
Abstract:
Provided herein are blends of polymers which are suitable for preparation of hollow fiber membranes. The polymer blends comprise a blend of a first polymer comprising a sulfone polymer having zwitterionic functionality and a second polymer comprising a sulfone polymer.
Abstract:
A hollow-fiber membrane is presented. The hollow fiber membrane, includes a copolymer including sulfone structural units having a formula (I) and zwitterion-functionalized structural units having a formula (II). Method of making the hollow-fiber membrane is also presented.
Abstract:
A membrane including a polyarylnitrile copolymer is presented. The polyarylnitrile copolymer includes structural units having a formula (I) and at least one terminal group having a formula (II): wherein “a” is 0, 1, 2, or 3; “m” is an integer having a value of 35 to 150; R1 is independently at each occurrence a hyrogen atom, a halogen atom, a nitro group, a cyano group, a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, or a C3-C12 aromatic radical; R2 and R3 are independently a C1-C12 aliphatic radical, a C3-C12 cycloaliphatic radical, or a C3-C12 aromatic radical; L is an oxygen atom or a sulfur atom; and Ar is independently at each occurrence a residue of an aromatic diol or a residue of an aromatic dihalide.
Abstract:
A membrane including a block copolymer is presented. The block copolymer includes at least one block A including structural units having a formula (I), and at least one block B including structural units having a formula (II). A hollow-fiber membrane for hemodialysis or hemofiltration, and associated block copolymer are also presented.
Abstract:
A porous membrane patterning technique is provided. In one embodiment, a porous membrane may be patterned via printing on the porous membrane with a solvent such that the porous membrane collapses where the solvent is applied. In another embodiment, a patterned porous membrane may be formed by casting a solution including at least components of the porous membrane into voids of a casting plate or stencil, removing the casting plate, and letting the remaining components go through a phase inversion process to form porous membrane regions.
Abstract:
In an aspect, the present disclosure is directed to a composite structure. The composite structure includes a three-dimensional (3-D) grid structure and at least one monolithic skin layer at least partially enveloping and securing the grid structure. As such, the grid structure is configured to stabilize the composite structure under at least one of: static local buckling and dynamic global buckling.
Abstract:
A system for manufacturing a panel includes a support frame, a first caul plate arranged atop the support frame, a second caul plate arranged atop the first caul plate, and a heating assembly having a housing defining an inlet and an outlet. The housing includes one or more heaters. The heater(s) is configured to generate heat and the housing is configured to generate a first pressurized gas film. Thus, one or more layers of material to be consolidated may be placed between the first and second caul plates and drawn through the heating assembly as the heating assembly applies pressure to the one or more layers of material to be consolidated via the first pressurized gas film in combination with applying the heat via the one or more heaters, thereby consolidating the panel.
Abstract:
A porous electrolyte structure for a solid state battery is provided. The porous electrolyte structure has an interconnected ceramic matrix with a network of open pores disposed throughout a thickness of the porous electrolyte structure. The porous electrolyte structure includes a porosity of about 20% by volume to about 80% by volume. A solid state battery cell including the porous electrolyte structure and a method of making the solid state battery cell are also provided.
Abstract:
Method and systems, for processing biological material, that contain a biological material in a vessel; add an aggregating agent to the material in the vessel and allow the material to separate into two or more distinct submaterials; extract one or more of the submaterials from the vessel; automatically transport one or more of the submaterials remaining in the vessel to a filtration device; and collect a resulting target retentate into a target retentate receptacle.