Abstract:
A normal space data source stores, for each of a plurality of threat nodes, a series of normal values that represent normal operation of an industrial asset control system, and a threatened space data source stores a series of threatened values. A model creation computer may generate sets of normal and threatened feature vectors. The computer may also calculate and output at least one decision boundary for a threat detection model based on the normal and threatened feature vectors. The plurality of threat nodes may then generate a series of current values from threat nodes that represent a current operation of the asset control system. A threat detection computer may receive the series of current values from threat nodes, generate a set of current feature vectors, execute the threat detection model, and transmit a threat alert signal based on the current feature vectors and at the least one decision boundary.
Abstract:
A system includes an analytics system including a processor configured to receive an indication of a detectable radiation associated with a combustion system. The detectable radiation includes multidimensional granular data associated with an operation of the combustion system. The processor is configured to determine a first value of one or more operational characteristics of the combustion system based at least in part on the indication of the detectable radiation, and to derive an output. The output includes a second value derived based on the first value of the one or more operational characteristics to adjust the first value thereto.
Abstract:
A non-transitory, computer readable medium stores instructions executable by a processor of an electronic device. The instructions include instructions to determine that a transient event is occurring in an electrical grid coupled to an EGR gas turbine system, wherein the transient event is an under-frequency or an under-voltage event. The instructions also include instructions to increase a flow rate of fuel to a combustor of the EGR gas turbine system in response to the transient event when the EGR gas turbine system is operating in a non-stoichiometric combustion mode. The instructions further include instructions to increase a flow rate of oxidant to the combustor before increasing the flow rate of fuel to the combustor, or to decrease a local consumption of the electrical power to increase a portion of the electrical power that is exported to the attached electrical grid, or both, in response to the transient event when the EGR gas turbine system is operating in a stoichiometric combustion mode.
Abstract:
A method of controlling an exhaust gas recirculation (EGR) gas turbine system includes adjusting an angle of a plurality of inlet guide vanes of an exhaust gas compressor of the EGR gas turbine system, wherein the plurality of inlet guide vanes have a first range of motion defined by a minimum angle and a maximum angle, and wherein the angle is adjusted based on one or more monitored or modeled parameters of the EGR gas turbine system. The method further includes adjusting a pitch of a plurality of blower vanes of a recycle blower disposed upstream of the exhaust gas compressor, wherein the plurality of blower vanes have a second range of motion defined by a minimum pitch and a maximum pitch, and the pitch of the plurality of blower vanes is adjusted based at least on the angle of the plurality of inlet guide vanes.
Abstract:
A gas turbine system includes a combustor configured to combust an oxidant and a fuel in the presence of an exhaust gas diluent to produce combustion products, an oxidant supply path fluidly coupled to the combustor and configured to flow the oxidant to the combustor at an oxidant flow rate, and a turbine configured to extract work from the combustion products to produce an exhaust gas used to generate the exhaust gas diluent. The turbine causes a shaft of the gas turbine system to rotate when the work is extracted from the combustion products. The system also includes an electrical generator that generates electrical power in response to rotation by the shaft, and a controller that performs load control in response to a target load by adjusting the oxidant flow rate along the oxidant flow path as a primary load control parameter.
Abstract:
A dynamic alarm system for operating a power plant is disclosed. The dynamic alarm system includes a sensor configured to generate a signal related to a measurement of an operation of the power plant. An interface displays a generated alarm to an operator and receives a dynamic rating value from the operator related to the generated alarm. A processor generates the alarm using the generated signal, compiles the rating value and alters an operation of the power plant from the compiled rating value.
Abstract:
A fluid monitoring system includes a controller configured to determine that a value of at least one fluid property of a fluid is greater than a threshold value, and to control actuators to identify which fluid source has the fluid with the value of the at least one fluid property greater than the threshold value. Each actuator is configured to drive a respective crossover valve between a first position and a second position to direct the fluid from a respective first fluid source to a first manifold or a second manifold and to direct the fluid from a respective second fluid source to the first manifold or the second manifold. In addition, the first manifold is configured to direct the fluid to a first sensor assembly, and the second manifold is configured to direct the fluid to a second sensor assembly.
Abstract:
A method of controlling an operating temperature of a first combustion zone of a combustor of a rotary machine includes determining a current operating temperature and a target operating temperature of a first combustion zone using a digital simulation. The method further includes determining a derivative of the current operating temperature with respect to a current fuel split using the digital simulation. The fuel split apportions a total flow of fuel to the combustor between the first combustion zone and a second combustion zone. The method also includes calculating a calculated fuel split that results in a calculated operating temperature approaching the target operating temperature. The method further includes channeling a first flow of fuel to the first combustion zone and a second flow of fuel to the second combustion zone.
Abstract:
A gas turbine system includes a combustor configured to combust an oxidant and a fuel in the presence of an exhaust gas diluent to produce combustion products, an oxidant supply path fluidly coupled to the combustor and configured to flow the oxidant to the combustor at an oxidant flow rate, and a turbine configured to extract work from the combustion products to produce an exhaust gas used to generate the exhaust gas diluent. The turbine causes a shaft of the gas turbine system to rotate when the work is extracted from the combustion products. The system also includes an electrical generator that generates electrical power in response to rotation by the shaft, and a controller that performs load control in response to a target load by adjusting the oxidant flow rate along the oxidant flow path as a primary load control parameter.
Abstract:
A system includes an exhaust gas recirculation (EGR) gas turbine system which includes a combustor configured to receive and combust a fuel with an oxidant and a turbine driven by combustion products from the combustor and a turbine driven by combustion products from the combustor. The EGR gas turbine system further includes an exhaust gas recirculation section fluidly coupled to the turbine and to the combustor, wherein the exhaust gas recirculation section is configured to intake an exhaust gas from the turbine and to recirculate at least a portion of the exhaust gas to the combustor as a diluent. The EGR gas turbine system additionally includes a control system, comprising one or more processors configured to receive a first signal representative of an exhaust flow composition of the exhaust gas and to receive a second signal representative of a diluent flow composition of the diluent.