Abstract:
A method of assembling an airfoil includes depositing a bonding material on a first end of the tip portion and shaping the bonding material to form a first plurality of features. The first plurality of features correspond to a second plurality of features on a second end of the body portion. The method also includes positioning the first end relative to the second end such that the first plurality of features and the second plurality of features interlock. The method further includes coupling the first end of the tip portion to the second end of the body portion.
Abstract:
A powder quality control system includes a powder container, a piston, and at least one sensor. The powder container is configured to contain a powder sample. The piston is configured to compact the powder sample in the powder container. The at least one sensor is configured to measure at least one parameter when the piston compacts the powder sample to facilitate determining a powder quality measurement for the powder sample.
Abstract:
An additive manufacturing apparatus including a build module is presented. The build module includes a support structure and an integrated build unit formed in the support structure. The integrated build unit includes a chamber; a powder supply compartment comprising a powder material, formed in the chamber; and a build compartment comprising a build platform, formed in the chamber adjacent to the powder supply compartment. A separator is disposed between the powder supply compartment and the build compartment. An additive manufacturing apparatus including a plurality of build modules is also presented.
Abstract:
A method of fabricating an airfoil includes forming a tip portion and imaging a second end of a body portion to obtain image data of one or more mortises formed therein. One or more tenons are formed on the first end of the tip portion using the image data of the second end of the body portion. The one or more tenons are manufactured using one of additive or subtractive manufacturing techniques. To complete assembly, the first end of the tip portion is positioned relative to the second end of the body portion such that each of the one or more tenons of the tip portion align with and are in sliding engagement with a respective one of the one or more mortises of the body portion. The body portion and the tip portion are coupled together such that the tip portion and the body portion form the airfoil. An airfoil formed by the method is also disclosed.
Abstract:
A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes applying a structural coating on at least a portion of the substrate and processing at least a portion of the surface of the structural coating so as to plastically deform the structural coating at least in the vicinity of the top of a respective groove, such that a gap across the top of the groove is reduced. A component is also disclosed and includes a structural coating disposed on at least a portion of a substrate, where the surface of the structural coating is faceted in the vicinity of the respective groove.
Abstract:
A manufacturing method includes providing a substrate with an outer surface and at least one interior space and machining the substrate to selectively remove a portion of the substrate and define one or more cooling supply holes therein. Each of the one or more cooling supply holes is in fluid communication with the at least one interior space. The method further includes disposing an open cell porous metallic layer on at least a portion of the substrate. The open cell porous metallic layer is in fluid communication with the one or more cooling supply holes. A coating layer is disposed on the open cell porous metallic layer. The coating layer having formed therein one or more cooling exit holes in fluid communication with the open cell porous metallic layer. The substrate, the one or more cooling supply holes, the open cell porous metallic layer and the cooling exit holes providing a cooling network for a component.
Abstract:
A method of fabricating a component is provided. The component includes a substrate having an outer surface and an inner surface, where the inner surface defines at least one interior space. The fabrication method includes forming at least one groove in the outer substrate surface. Each groove extends at least partially along the outer substrate surface and has an asymmetric cross-section. The method further includes forming at least one access hole in the substrate. Each access hole connects the respective groove in fluid communication with the respective interior space. A coating is disposed over at least a portion of the substrate surface, such that the groove(s) and the coating together define one or more channels for cooling the component. A component is also disclose and has at least one groove with an asymmetric cross-section.
Abstract:
A method of fabricating an airfoil includes imaging a second end of the body portion to obtain image data, casting the tip portion utilizing the image data of the second end of the body portion and coupling a first end of the tip portion to the second end of the body portion. One or more features of the tip portion align with one or more features of the body portion. The method also includes additively manufacturing a core of the tip portion utilizing the image data and forming a casting mold about the core. The tip portion is cast in the casting mold. The coupling of the tip portion to the body portion including depositing a bonding material on a first end of the tip portion. An airfoil formed by the method is also disclosed.
Abstract:
A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes applying a structural coating on at least a portion of the substrate and processing at least a portion of the surface of the structural coating so as to plastically deform the structural coating at least in the vicinity of the top of a respective groove, such that a gap across the top of the groove is reduced. A component is also disclosed and includes a structural coating disposed on at least a portion of a substrate, where the surface of the structural coating is faceted in the vicinity of the respective groove.
Abstract:
A manufacturing method includes providing a substrate with an outer surface and at least one interior space, selectively deposited a coating on a portion of the substrate to form a selectively deposited coating having one or more grooves formed therein. The method further includes processing at least a portion of the surface of the selectively deposited coating to plastically deform the selectively deposited coating in the vicinity of the top of a respective groove. An additional coating is applied over at least a portion of the surface of the selectively deposited coating. A component is disclosed and includes a substrate, a selectively deposited coating disposed on at least a portion of the substrate, and defining one or more grooves therein, and an additional coating disposed over the selectively deposited coating. The substrate, the selectively deposited coating and the additional coating defining one or more channels for cooling the component.