Abstract:
A flow angle probe is provided comprising: (a) a probe vane configured to contact a moving fluid within a fluid conduit; (b) an optional probe mounting mechanically coupled to the probe vane; (c) a rotary shaft coupled either to the optional probe mounting or the probe vane; (d) a rotary encoder coupled to the rotary shaft; (e) a sensor hermetically isolated from the probe vane and configured to sense a change in position of the rotary encoder; and (f) a probe housing encompassing at least a portion of the rotary shaft, the rotary encoder and the sensor. The novel flow angle probes disclosed herein may be used in a wide variety of turbomachines and fluid processing systems, and applications, including turbomachine design and operational control, as well as in flow assurance.
Abstract:
Gas bearing for an aspirating seal assembly is disclosed. The gas bearing includes a bearing body having a bearing surface. The gas bearing further includes a first through-hole disposed in the bearing body, and a plurality of second through-holes spaced apart from each other and disposed around the first through-hole. The first through-hole is characterized by a size, and a first central axis. Each second through-hole is characterized by a size, and a second central axis. The second central axis of each second through-hole in the plurality of second through-holes intersects the first central axis at an angle in a range from about 30 degrees to about 150 degrees or at an angle in a range from about −30 degrees to about −150 degrees. Size of at least one through-hole in the plurality of second through-holes is different from the size of the first through-hole.
Abstract:
A fluid processing system is provided containing a pump and a fluid reservoir. The pump includes a casing, one or more pump stages, a pump inlet, and a pump outlet. The casing includes one or more slots, with at least one slot configured to extract at least a portion of a multiphase fluid flowing within the pump. The fluid reservoir encompasses at least a portion of the casing and is configured to receive and separate the portion of the multiphase fluid into an extracted liquid phase and an extracted gaseous phase. The fluid reservoir includes a re-circulation conduit disposed proximate to the pump inlet and a discharge device coupled to the re-circulation conduit. The discharge device regulates re-circulation of at least a portion of the extracted liquid phase to the pump via the pump inlet for reducing a gas volume fraction of the multiphase fluid being fed to the pump.
Abstract:
A counter rotating helico-axial pump is provided, the pump comprising: (a) an inner rotor comprising a plurality of outwardly extending helico-axial impeller vanes; (b) a hollow outer rotor comprising a plurality of inwardly extending helico-axial impeller vanes; (c) a single driving device configured to drive the inner rotor or the hollow outer rotor; and (d) a force transmission coupling joining the inner rotor and the hollow outer rotor and configured to permit rotation of the inner rotor and hollow outer rotor in opposite directions; wherein at least a portion of the inner rotor is disposed within the hollow outer rotor, and wherein the inner rotor, the hollow outer rotor and the helico-axial impeller vanes define a fluid flow path, and wherein the inner rotor and hollow outer rotor are configured such that at least some of adjacent helico-axial impeller vanes are configured to rotate in opposite directions.
Abstract:
A turbine vane frame apparatus includes: an annular inner band disposed about a centerline axis and defining an inner flowpath surface; an annular outer band surrounding the inner band and defining an outer flowpath surface; and an array of axial-flow airfoil-shaped vanes disposed between the inner and outer flowpath surfaces, wherein the vanes have at least three different chord dimensions.
Abstract:
Centrifugal compressor having flow-control blades in which each of the flow-control blades has a pressure side and an opposite suction side. Each of the flow-control blades includes a main section and an inducer section that project away from an impeller surface. The inducer section is positioned upstream from the main section. The inducer section includes a trailing edge and the main section includes a leading edge that is spaced apart from the trailing edge. The inducer sections are aligned with the respective main sections as the inducer and main sections project from the impeller surface to a designated point above the impeller surface. Each of the trailing edges of the inducer sections and the respective leading edge of the main section form a bleed gap therebetween after the designated point. The bleed gap is configured to permit fluid to flow therethrough from the pressure side to the suction side.
Abstract:
A liquid ring fluid flow machine is presented. The machine includes a stationary annular housing having an outer surface and an inner surface. The inner surface defines a chamber that is arranged to receive a liquid. A rotor having a core and a plurality of radially extending vanes is eccentrically rotatably mounted within the chamber for directing the liquid into a recirculating liquid ring in proximity to the inner surface of the housing within the chamber. The inner surface of the housing that is in contact with the recirculating liquid ring is covered by a hydrophobic coating. The machine further includes a first supply pipe and a second supply pipe, each in fluid communication with the chamber.
Abstract:
A compressor for a gas turbine engine including one or more endwall treatments for controlling leakage flow and circumferential flow non-uniformities in the compressor. The compressor includes a casing, a hub, a flow path formed between the casing and the hub, a plurality of blades positioned in the flow path, and one or more circumferentially varying end-wall treatments formed in an interior surface of at least one of the casing or the hub. Each of the one or more circumferentially varying endwall treatments circumferentially varying based on their relative position to an immediately adjacent upstream bladerow. Each of the one or more endwall treatments is circumferentially varied in at least one of placement relative to the immediately adjacent upstream bladerow or in geometric parameters defining each of the plurality of circumferentially varying endwall treatments. Additionally disclosed is an engine including the compressor.
Abstract:
A subsea boosting module for use with an alternating current (AC) power system includes a housing defining at least one interior chamber. A fluid pump is disposed within the interior chamber. An electric motor is disposed within the interior chamber and drivingly coupled to the fluid pump. A plurality of power components is disposed within the interior chamber to deliver power to the electric motor.
Abstract:
A subsea boosting module for use with a direct current (DC) power system includes a housing defining at least one interior chamber. A fluid pump is disposed within the interior chamber. An electric motor is disposed within the interior chamber and drivingly coupled to the fluid pump. A plurality of power components is disposed within the interior chamber to deliver power to the electric motor.