Abstract:
A fluid transport system includes at least one flow control device and a multiphase pump configured to transport fluid. At least one pump sensing device is configured to measure at least one operating characteristic of the multiphase pump. A controller is programmed with a pump map including a correlation of the at least one operating characteristic of the multiphase pump with at least one operating characteristic of the fluid. The controller is configured to determine an estimated value of the at least one operating characteristic of the fluid based on the measured value of the at least one operating characteristic of the multiphase pump and the pump map. At least one regulating device coupled to at least one flow control device is modulated based on the estimated value of the at least one operating characteristic of the fluid.
Abstract:
A system 10 and method of operating the system 10 are disclosed. The system 10 includes a compressor 20, a combustion engine 30, and an input system 60. The compressor 20 is configured to mix and compress a liquid hydrocarbon fuel 15 and a first hydrocarbon gas fuel 17, thereby to form a liquid fuel mixture 21. The combustion engine 30 is disposed downstream of the compressor 20 and includes a dual fuel injection system 40 and a combustion chamber 50. The dual fuel injection system 40 includes a nozzle 42 that is configured to inject the liquid fuel mixture 21 into the combustion chamber 50 of the combustion engine 30. The input system 60 is fluidly connected with the combustion engine 30, and configured to inject air 62 and a second hydrocarbon gas fuel 64 into the combustion chamber 50.
Abstract:
A fluid transport system includes at least one flow control device and a multiphase pump configured to transport fluid. At least one pump sensing device is configured to measure at least one operating characteristic of the multiphase pump. A controller is programmed with a pump map including a correlation of the at least one operating characteristic of the multiphase pump with at least one operating characteristic of the fluid. The controller is configured to determine an estimated value of the at least one operating characteristic of the fluid based on the measured value of the at least one operating characteristic of the multiphase pump and the pump map. At least one regulating device coupled to at least one flow control device is modulated based on the estimated value of the at least one operating characteristic of the fluid.
Abstract:
A system 10 and method of operating the system 10 are disclosed. The system 10 includes a compressor 20, a combustion engine 30, and an input system 60. The compressor 20 is configured to mix and compress a liquid hydrocarbon fuel 15 and a first hydrocarbon gas fuel 17, thereby to form a liquid fuel mixture 21. The combustion engine 30 is disposed downstream of the compressor 20 and includes a dual fuel injection system 40 and a combustion chamber 50. The dual fuel injection system 40 includes a nozzle 42 that is configured to inject the liquid fuel mixture 21 into the combustion chamber 50 of the combustion engine 30. The input system 60 is fluidly connected with the combustion engine 30, and configured to inject air 62 and a second hydrocarbon gas fuel 64 into the combustion chamber 50.
Abstract:
A subsea fluid processing system is provided containing a liquid reservoir, an inlet tank, a pump, an outlet system, and a fluid re-circulation loop. The liquid reservoir circulates a primer liquid stream to the inlet tank via the fluid re-circulation loop. The inlet tank further receives a first production fluid stream and mixes it with the primer liquid stream to produce thereby a second production fluid stream having a reduced gas volume fraction (GVF) relative to the first production fluid stream. The pump receives the second production fluid stream from the inlet tank and increases its pressure. Further, the outlet system containing the liquid reservoir receives the second production fluid stream from the pump and separates at least a portion of the primer liquid stream from a principal production stream. The primer liquid includes at least one exogenous liquid not derived from the first production fluid stream.
Abstract:
A fluid processing system is provided containing a pump and a fluid reservoir. The pump includes a casing, one or more pump stages, a pump inlet, and a pump outlet. The casing includes one or more slots, with at least one slot configured to extract at least a portion of a multiphase fluid flowing within the pump. The fluid reservoir encompasses at least a portion of the casing and is configured to receive and separate the portion of the multiphase fluid into an extracted liquid phase and an extracted gaseous phase. The fluid reservoir includes a re-circulation conduit disposed proximate to the pump inlet and a discharge device coupled to the re-circulation conduit. The discharge device regulates re-circulation of at least a portion of the extracted liquid phase to the pump via the pump inlet for reducing a gas volume fraction of the multiphase fluid being fed to the pump.
Abstract:
A heat exchange sub-system and fluid processing system is provided containing an inlet header; an outlet header; a plurality of heat exchange tubes in fluid communication with the inlet header and outlet header. The heat exchange tubes are configured to exchange heat with a cold ambient environment. A liquid-gas separator is coupled to the outlet header. The heat exchange sub-system is configured to receive a hot gaseous fluid comprising condensable and non-condensable components, and to condense at least a portion of the condensable components. The system is configured such that the cold ambient subsea environment serves as a heat sink.
Abstract:
A multiphase pumping system for transporting a fluid includes a multiphase pump configured to increase pressure within the fluid and a recuperator in fluid communication with the multiphase pump. The recuperator is configured to remove thermal energy from a fluid upstream of the multiphase pump and is further configured to add thermal energy to a fluid downstream of the multiphase pump. The multiphase pumping system further includes a cooler configured to remove thermal energy from the fluid upstream of the multiphase pump.
Abstract:
A multiphase pumping system for transporting a fluid includes a multiphase pump configured to increase pressure within the fluid and a recuperator in fluid communication with the multiphase pump. The recuperator is configured to remove thermal energy from a fluid upstream of the multiphase pump and is further configured to add thermal energy to a fluid downstream of the multiphase pump. The multiphase pumping system further includes a cooler configured to remove thermal energy from the fluid upstream of the multiphase pump.
Abstract:
A subsea fluid processing system is provided containing a liquid reservoir, an inlet tank, a pump, an outlet system, and a fluid re-circulation loop. The liquid reservoir circulates a primer liquid stream to the inlet tank via the fluid re-circulation loop. The inlet tank further receives a first production fluid stream and mixes it with the primer liquid stream to produce thereby a second production fluid stream having a reduced gas volume fraction (GVF) relative to the first production fluid stream. The pump receives the second production fluid stream from the inlet tank and increases its pressure. Further, the outlet system containing the liquid reservoir receives the second production fluid stream from the pump and separates at least a portion of the primer liquid stream from a principal production stream. The primer liquid includes at least one exogenous liquid not derived from the first production fluid stream.