Abstract:
Methodologies and an apparatus for enabling OPC models to account for errors in the mask are disclosed. Embodiments include: determining a patterning layer of a circuit design; estimating a penetration ratio indicating a mask corner rounding error of a fabricated mask for forming the patterning layer in a fabricated circuit; and determining, by a processor, a compensation metric for optical proximity correction of the circuit design based on the penetration ratio.
Abstract:
A method includes receiving a layout of an integrated circuit that includes a plurality of layers, one of the layers is selected and one or more tile number values are provided. A die area of the integrated circuit is partitioned into a plurality of tiles on the basis of the tile number values. It is determined, on the basis of the layout, if a portion of the selected one of the layers in the tile has an available space for inclusion of a test cell or a dummy cell, and a label indicative of a result is assigned to the tile. It is determined, on the basis of the labels assigned, if one or more space availability criteria are fulfilled and, if fulfilled, the labels are used for placing at least one of one or more test cells and one or more dummy cells in the layout.
Abstract:
Methods for identification and partial re-routing of selected areas (e.g., including critical areas) in a layout of an IC design and the resulting device are disclosed. Embodiments include comparing design data of an IC device against criteria of manufacturing processes to manufacture the IC device; identifying in the design data a layout area based, at least in part, on proximity of metal segments, interconnecting segments, or a combination thereof in the layout area; performing partial re-routing in the layout area to substantially meet the criteria, wherein at least one interconnecting element is shifted or extended; and integrating the partial re-routing into the design data for use in the manufacturing processes.
Abstract:
A method includes providing a pre-optical proximity correction (OPC) layout of at least a portion of at least one reticle. The pre-OPC layout defines a test cell including a first test cell area having a plurality of first target features having a first pitch and a second test cell area having a plurality of second target features having a second pitch. A post-OPC layout of the portion of the reticle is formed on the basis of the pre-OPC layout. The formation of the post-OPC layout includes performing a rule-based OPC process, wherein a plurality of first reticle features for the first test cell area are provided on the basis of the plurality of first target features, and performing a model-based OPC process, wherein a plurality of second reticle features for the second test cell area are provided on the basis of the plurality of second target features.
Abstract:
Approaches for simulating a photolithographic process are provided. Specifically, provided is an optical proximity correction (OPC) model that includes kernel parameters corresponding to inter-layer activity and an etch process for a connecting via of an integrated circuit (IC). A resultant intensity is determined for a corresponding plurality of process variations corresponding to the interlayer activity and the etch process. As such, the OPC model considers both interlay activity and etch process.