Abstract:
Approaches for improving overlay performance for an integrated circuit (IC) device are provided. Specifically, the IC device (e.g., a fin field effect transistor (FinFET)) is provided with an oxide layer and a pad layer formed over a substrate, wherein the oxide layer comprises an alignment and overlay mark, an oxide deposited in a set of openings formed through the pad layer and into the substrate, a mandrel layer deposited over the oxide material and the pad layer, and a set of fins patterned in the IC device without etching the alignment and overlay mark. With this approach, the alignment and overlay mark is provided with the fin cut (FC) layer and, therefore, avoids finification.
Abstract:
Methods for forming a narrow isolation region are disclosed. The narrow isolation region may serve as an extra narrow diffusion break, suitable for use in 3D FinFET technologies. A pad nitride layer is formed over a semiconductor substrate. A cavity is formed in the pad nitride layer. A conformal spacer liner is deposited in the cavity. An anisotropic etch process then forms a trench in the semiconductor substrate. The trench is narrow enough such that a dummy gate completely covers the trench. Epitaxial stressor regions may then be formed adjacent to the dummy gate. The trench is narrow enough such that there is a gap between the epitaxial stressor regions and the trench.