Abstract:
An integrated circuit product is disclosed that includes a plurality of trenches in a semiconducting substrate that define first, second and third fins, wherein the fins are side-by-side, and wherein the second fin is positioned between the first and third fins, a layer of insulating material in the plurality of trenches such that a desired height of the first, second and third fins is positioned above an upper surface of the layer of insulating material, a recess defined in the second fin that at least partially defines a cavity in the layer of insulating material, an SDB isolation structure in the cavity on the recessed portion of the second fin, wherein the SDB isolation structure has an upper surface that is above the upper surface of the layer of insulating material, and a gate structure for a transistor positioned above the SDB isolation structure.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
A structure, an STI structure and a related method are disclosed. The structure may include an active region extending from a substrate; a gate extending over the active region; and a source/drain region in the active region, and an STI structure. The STI structure includes a liner and a fill layer on the liner along the opposed longitudinal sides of a lower portion of the active region, and the fill layer along the opposed ends of the active region. The liner may include a tensile stress-inducing liner that imparts a transverse-to-length tensile stress in at least a lower portion of the active region but not lengthwise. The liner can be applied in an n-FET region and/or a p-FET region to improve performance.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a first gate structure above a fin, forming epi semiconductor material on the fin, performing at least one first etching process through a patterned sacrificial layer of material to remove at least a gate cap layer and sacrificial gate materials of the first gate structure so as to define a first isolation cavity that exposes the fin while leaving the second gate structure intact, performing at least one second etching process through the first isolation cavity to remove at least a portion of a vertical height of the fin and thereby form a first isolation trench, removing the patterned sacrificial layer of material, and forming a layer of insulating material above the epi semiconductor material and in the first isolation trench and in the first isolation cavity.
Abstract:
The present disclosure relates to a method which includes generating a device layout of an eBeam based overlay (EBO OVL) structure with a minimum design rule, simulating a worst case process margin for the generated device layout of the EBO OVL structure, enabling a plurality of devices for the simulated worst case process margin for the generated device layout of the EBO OVL structure, and breaking a plurality of design rules for the enabled plurality of devices of the EBO OVL structure to generate an OVL measurement layout of the EBO OVL structure.
Abstract:
Approaches for improving overlay performance for an integrated circuit (IC) device are provided. Specifically, the IC device (e.g., a fin field effect transistor (FinFET)) is provided with an oxide layer and a pad layer formed over a substrate, wherein the oxide layer comprises an alignment and overlay mark, an oxide deposited in a set of openings formed through the pad layer and into the substrate, a mandrel layer deposited over the oxide material and the pad layer, and a set of fins patterned in the IC device without etching the alignment and overlay mark. With this approach, the alignment and overlay mark is provided with the fin cut (FC) layer and, therefore, avoids finification.
Abstract:
A method to address overlay accuracy compensation using finFET cut isolation revisions is disclosed. For an integrated circuit (IC) layout including at least a portion of an active region including a plurality of gates extending over a plurality of fins, prior to optical proximity correction of the IC layout: the method determines a number of fins to be cut with same source/drain connection by a fin cut isolation opening, and determines a fin cut isolation pitch in the gate length direction of the plurality of gates. The method revises a size of a fin cut isolation opening in the IC layout based on a number of fins to be cut with same source/drain connection by the fin cut isolation opening and the fin cut isolation pitch in the gate length direction. The revision in size of the fin cut isolation compensates for overlay inaccuracy.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
Approaches for providing a narrow diffusion break in a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device is provided with a set of fins formed from a substrate, and an opening formed through the set of fins, the opening oriented substantially perpendicular to an orientation of the set of fins. This provides a FinFET device capable of achieving cross-the-fins insulation with an opening size that is adjustable from approximately 20-30 nm.