Battery system, battery pack handling system and electrolyte evacuation and refill station

    公开(公告)号:US11955666B2

    公开(公告)日:2024-04-09

    申请号:US17156782

    申请日:2021-01-25

    摘要: A battery system includes an enclosure having opposed first and second major walls, a perimetral wall connecting the first and second major walls along respective perimeters thereof, and an interior defined by the first and second major walls and the perimetral wall, wherein the enclosure is configured for containing an anode assembly, a cathode assembly and an electrolyte within the interior. A longitudinal embossment is formed in the perimetral wall extending outward from the interior and extending along opposed adjacent portions of the first and second perimeters. A wall port is defined in the perimetral wall in fluid communication with the interior, wherein the wall port is configured for permitting flow of the electrolyte therethrough into and out of the interior. First and second electrodes extend through the perimetral wall and are configured for electrical connection with the anode assembly and cathode assembly, respectively.

    BATTERY SYSTEM, BATTERY PACK HANDLING SYSTEM AND ELECTROLYTE EVACUATION AND REFILL STATION

    公开(公告)号:US20220238972A1

    公开(公告)日:2022-07-28

    申请号:US17156782

    申请日:2021-01-25

    摘要: A battery system includes an enclosure having opposed first and second major walls, a perimetral wall connecting the first and second major walls along respective perimeters thereof, and an interior defined by the first and second major walls and the perimetral wall, wherein the enclosure is configured for containing an anode assembly, a cathode assembly and an electrolyte within the interior. A longitudinal embossment is formed in the perimetral wall extending outward from the interior and extending along opposed adjacent portions of the first and second perimeters. A wall port is defined in the perimetral wall in fluid communication with the interior, wherein the wall port is configured for permitting flow of the electrolyte therethrough into and out of the interior. First and second electrodes extend through the perimetral wall and are configured for electrical connection with the anode assembly and cathode assembly, respectively.

    Electrochemical cell and method of manufacturing

    公开(公告)号:US11309539B2

    公开(公告)日:2022-04-19

    申请号:US16131875

    申请日:2018-09-14

    摘要: An electrochemical cell comprising an alkali metal negative electrode layer physically and chemically bonded to a surface of a negative electrode current collector via an intermediate metal chalcogenide layer. The intermediate metal chalcogenide layer may comprise a metal oxide, a metal sulfide, a metal selenide, or a combination thereof. The intermediate metal chalcogenide layer may be formed on the surface of the negative electrode current collector by exposing the surface to a chalcogen or a chalcogen donor compound. Then, the alkali metal negative electrode layer may be formed on the surface of the negative electrode current collector over the intermediate metal chalcogenide layer by contacting at least a portion of the metal chalcogenide layer with a source of sodium or potassium to form a layer of sodium or potassium on the surface of the negative electrode current collector over the metal chalcogenide layer.

    Nickel-containing positive electrode slurries having reduced or eliminated gelation and high-energy-density positive electrodes for electrochemical cells

    公开(公告)号:US11600814B2

    公开(公告)日:2023-03-07

    申请号:US17158737

    申请日:2021-01-26

    摘要: An electrode precursor or slurry according to various aspects of the present disclosure includes a blended electroactive material and a binder solution. The blended electroactive material includes a first electroactive material and a second electroactive material. The first electroactive material includes nickel. The first electroactive material is selected from the group consisting of LiNixCoyMnzO2 where x is greater than 0.6, LiNixCoyAlzO2 where x is greater than 0.6, LiNixCoyMnzAlαO2 where x is greater than 0.6, or any combination thereof. The second electroactive material includes a phosphor-olivine compound at less than or equal to about 30 weight percent of the blended electroactive material. The binder solution including a polymeric binder and a solvent including N-methyl-2-pyrrolidone. In various aspects, the present disclosure provides a high-nickel-content positive electrode formed from the slurry. In various aspects, the present disclosure provides an electrochemical cell including the positive electrode and a lithium metal negative electrode.

    ELECTROCHEMICAL CELLS WITH COPPER-FREE ELECTRODES AND METHODS FOR MANUFACTURING THE SAME

    公开(公告)号:US20220131126A1

    公开(公告)日:2022-04-28

    申请号:US17082618

    申请日:2020-10-28

    IPC分类号: H01M4/04 H01M4/46

    摘要: Presented are electrochemical devices with copper-free electrodes, methods for making/using such devices, and lithium alloy-based electrode tabs and current collectors for rechargeable lithium-class battery cells. A method of manufacturing copper-free electrodes includes feeding an aluminum workpiece, such as a strip of aluminum sheet metal, into a masking device. The masking device then applies a series of dielectric masks, such as strips of epoxy resin or dielectric tape, onto discrete areas of the workpiece to form a masked aluminum workpiece with masked areas interleaved with unmasked areas. The masked workpiece is then fed into an electrolytic anodizing solution, such as sulfuric acid, to form an anodized aluminum workpiece with anodized surface sections on the unmasked areas interleaved with un-anodized surface sections underneath the dielectric masks of the masked areas. The dielectric masks are removed to reveal the un-anodized surface sections, and the anodized aluminum workpiece is segmented into multiple copper-free electrodes.