Method for forming sulfur-containing electrode using salt additive

    公开(公告)号:US11342549B2

    公开(公告)日:2022-05-24

    申请号:US16743650

    申请日:2020-01-15

    Abstract: The present disclosure relates to sulfur-containing electrodes and methods for forming the same. For example, the method may include disposing an electroactive material on or near a current collector to form an electroactive material layer having a first porosity and applying pressure and heat to the electroactive material layer so that the electroactive material layer has a second porosity. The first porosity is greater than the second porosity. The electroactive material may include a plurality of electroactive material particles and one or more salt additives. The method may further include contacting the electroactive material layer and an electrolyte such that the electrolyte dissolves the plurality of one or more salt particles so that the electroactive material layer has a third porosity. The third porosity may be greater than the second porosity and less than the first porosity.

    Sulfur-based composite cathode-separator laminations and battery cells comprising the same

    公开(公告)号:US11171359B2

    公开(公告)日:2021-11-09

    申请号:US16446569

    申请日:2019-06-19

    Abstract: Composite cathode-separator laminations (CSL) include a current collector with sulfur-based host material applied thereto, a coated separator comprising an electrolyte membrane separator with a carbonaceous coating, and a porous, polymer-based interfacial layer (PBIL) forming a binding interface between the carbonaceous coating and the host material. The host material includes less than about 6% polymeric binder, and less than about 40% electrically conductive carbon, with the balance comprising one or more sulfur compounds. The PBIL can have a thickness of less than about 5 μm and a porosity of about 5% to about 40%. The host material can comprise less than about 40% conductive carbon (e.g., graphene) and have a porosity of less than about 40%. The carbonaceous coating (e.g., graphene) can have a thickness of about 1 μm to about 5 μm. The CSL can be disposed with an anode within an electrolyte to form a lithium-sulfur battery cell.

    METHOD OF MANUFACTURING AN ELECTROCHEMICAL CELL

    公开(公告)号:US20190207201A1

    公开(公告)日:2019-07-04

    申请号:US16131853

    申请日:2018-09-14

    Abstract: In a method of manufacturing an electrochemical cell, a porous or non-porous electrically conductive metal substrate may be provided. A conformal metal chalcogenide layer may be formed on a surface of the metal substrate. The metal substrate with the conformal metal chalcogenide layer may be immersed in a nonaqueous liquid electrolyte solution comprising a lithium salt dissolved in a polar aprotic organic solvent. An electrical potential may be established between the metal substrate and a counter electrode immersed in the nonaqueous liquid electrolyte solution such that lithium ions in the electrolyte solution are reduced to metallic lithium and deposited on the surface of the metal substrate over the metal chalcogenide layer to form a conformal lithium metal layer on the surface of the metal substrate over the metal chalcogenide layer.

Patent Agency Ranking