Microporous and hierarchical porous carbon

    公开(公告)号:US11328878B2

    公开(公告)日:2022-05-10

    申请号:US16453112

    申请日:2019-06-26

    Abstract: A porous carbon material includes a hierarchical porous structure including a primary microporous structure and at least one of a secondary mesoporous structure and a secondary macroporous structure. The porous carbon material is formed by combining a halogenated-hydrocarbon, an aprotic hydrocarbon solvent, and a reductant to initiate a reaction that forms intermediate particles having a microporous framework; and subjecting the intermediate particles to a heat treatment at a heat treatment temperature ranging from about 300° C. to less than 1,500° C. for a heat treatment time period ranging from about 20 minutes to about 10 hours to thereby form the porous carbon material. The aprotic hydrocarbon solvent is selected from the group consisting of toluene, hexane, cyclohexane, and combinations thereof.

    Self-healing, UV-absorbing polymer coating

    公开(公告)号:US11084947B2

    公开(公告)日:2021-08-10

    申请号:US15845402

    申请日:2017-12-18

    Abstract: Systems and methods of providing a self-healing UV-protective polymer coating include a polymer matrix formed by initiating polymerization of a UV-absorbing-matrix precursor and a UV initiator and a self-healing portion disposed within the polymer matrix. The polymer matrix includes a plurality of active sites therein. The self-healing portion includes a self-healing precursor that is flowable and a self-healing initiator. The self-healing initiator is configured to polymerize the self-healing precursor using a cationic ring opening process.

    Methods for manufacturing sulfur electrodes

    公开(公告)号:US11031586B2

    公开(公告)日:2021-06-08

    申请号:US16221874

    申请日:2018-12-17

    Abstract: Methods for manufacturing sulfur electrodes include providing an electrode, wherein the electrode includes a current collector having a first surface, and a sulfur-based host material applied to the first surface of the current collector, wherein the sulfur-based host material comprises one or more sulfur compounds, one or more electrically conductive carbon materials, and one or more binders. The methods further include forming a plurality of channels within the sulfur-based host material using a laser or electron beam, wherein the plurality of channels define a plurality of host material columns, each column having one or more exterior surfaces contiguous which one or more of the channels which extend outward from the first surface of the current collector. Each of the one or more exterior surfaces can define a heat affected zone comprising a higher concentration of sulfur than the host material column prior to forming the plurality of channels.

    Method of manufacturing an electrochemical cell

    公开(公告)号:US10797301B2

    公开(公告)日:2020-10-06

    申请号:US16131853

    申请日:2018-09-14

    Abstract: In a method of manufacturing an electrochemical cell, a porous or non-porous electrically conductive metal substrate may be provided. A conformal metal chalcogenide layer may be formed on a surface of the metal substrate. The metal substrate with the conformal metal chalcogenide layer may be immersed in a nonaqueous liquid electrolyte solution comprising a lithium salt dissolved in a polar aprotic organic solvent. An electrical potential may be established between the metal substrate and a counter electrode immersed in the nonaqueous liquid electrolyte solution such that lithium ions in the electrolyte solution are reduced to metallic lithium and deposited on the surface of the metal substrate over the metal chalcogenide layer to form a conformal lithium metal layer on the surface of the metal substrate over the metal chalcogenide layer.

    ELECTROLYTE MEMBRANE
    10.
    发明申请

    公开(公告)号:US20190165415A1

    公开(公告)日:2019-05-30

    申请号:US16265326

    申请日:2019-02-01

    Abstract: Systems and methods of providing an electrolyte membrane for metal batteries are described. According to aspects of the disclosure, a method includes preparing a mixture including an electrolyte portion and a matrix precursor portion, forming an electrolyte membrane by initiating polymerization of the gel-forming precursor and the gel-forming initiator to thereby form a polymer matrix, and disposing the electrolyte membrane between an anode and a cathode. The matrix precursor portion includes a gel-forming precursor and a gel-forming initiator. The electrolyte portion is disposed substantially throughout the polymer matrix.

Patent Agency Ranking