Abstract:
Presented are fuel cell systems and control logic for extracting water from system exhaust, methods for making/using such systems, and electric-drive vehicles with aftertreatment systems for extracting water from fuel cell exhaust. An aftertreatment system for a fuel cell stack includes a condensate generator that fluidly connects to the fuel cell stack to receive exhaust output therefrom. The condensate generator includes an evaporator core with a refrigerant line that actively cool the exhaust via controlled circulation of refrigerant fluid. A condensate collector fluidly connected to the condensate generator includes a reservoir housing with a condensate trap that separates entrained water vapor from the cooled exhaust. The reservoir housing collects the separated water vapor as liquid water. A liquid storage container fluidly connected to the condensate collector receives and stores the collected water. An expansion valve regulates the amount of refrigerant fluid passed into the evaporator core through the refrigerant line.
Abstract:
An automobile vehicle refrigeration system combined ejector-receiver includes a container. An internal heat exchanger (IHX) is positioned entirely within the container. The IHX includes a canister. A receiver and dryer is located entirely within the container and is positioned at least partially within the canister defining a cavity between the receiver and dryer and the canister to receive a refrigerant. An ejector is positioned within the container. An ejector feed line is in communication with the cavity between the receiver and dryer and the canister, the ejector feed line receiving the refrigerant after discharge from the cavity for flow into the ejector. A refrigerant phase separator is positioned within the container. The refrigerant phase separator receives the refrigerant after discharge from the ejector for separation into each of a refrigerant gas and a refrigerant liquid.
Abstract:
A valve in receiver (VIR) for a climate control system includes a receiver drier shell having an outer surface and an inner surface defining an interior portion having an opening. A drier housing is disposed in the receiver drier shell and a molded desiccant is disposed internal to the drier housing. The molded desiccant is configured to form a restrictive fluid flow passage along an interior surface of the drier housing.
Abstract:
A system, for inhibiting ice formation on a vehicle surface, and de-icing if determined needed to remove any frozen matter formed on the surface, including an anti-icing reservoir, a fluid-selecting control valve, and code that causes a processor to perform operations including determining whether the vehicle is parked, initiating, if parked, activation of, or obtaining of readouts from, any local sensors or routines to be used to determine whether a condition triggering initiation of an anti-freezing cycle is present. The operations include commencing, if triggered, an anti-icing cycle, including initiating changing of the fluid-selection valve to select the anti-freezing reservoir, and initiating pumping of the anti-icing fluid from the anti-icing reservoir to and through a fluid-dispensing nozzle, and onto the surface for inhibiting bonding of frozen material on the surface and/or remove any already formed frozen material on the surface.
Abstract:
One variation may include a product including a mixture including CF3CF═CH2 and a lubricating oil or grease wherein the lubricating oil or grease that reduces eliminates the likelihood that the refrigerant will ignite.