Abstract:
A workpiece is described, and includes a substrate, a cable, and a cover piece. A portion of the cable is joined to the substrate employing a vibration welding tool, and the cover piece is interposed between the portion of the cable and the vibration welding tool during the joining.
Abstract:
A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host machine, a check station, and a welding robot. At least one displacement sensor is positioned with respect to one of the welding equipment and the check station. The robot moves the horn and anvil via an arm to the check station, when a threshold condition is met, i.e., a predetermined amount of time has elapsed or a predetermined number of welds have been completed. The robot moves the horn and anvil to the check station, activates the at least one displacement sensor, at the check station, and determines a status condition of the welding equipment by processing the received signals. The status condition may be one of the alignment of the vibration welding equipment and the wear or degradation of the vibration welding equipment.
Abstract:
A welding assembly includes a sonotrode, cleaning station, and controller. The controller periodically commands clamping of the sonotrode onto the cleaning block, and a transmission of ultrasonic energy into the cleaning block for a calibrated duration sufficient for removing residual amounts of metal from welding pads of the sonotrode. The cleaning block may include an aluminum bar coated with a polymeric material, e.g., porous polyethylene silica or alumina composite. A thin sacrificial layer of an anti-adhesion material, e.g., colloidal silica, may be periodically applied to the welding pads, particularly after a transition from welding a first metal to welding a second metal. The sacrificial layer may be applied via a sponge, a saturated surface, or spraying.
Abstract:
A method and a test fixture for evaluating a battery cell are described, wherein the battery cell is composed of a cell body having a plurality of electrode foils that are joined to both a positive terminal and a negative terminal at weld junctions. The method includes retaining the cell body of the battery cell in a first clamping device and gripping one of the positive and negative terminals in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper is employed to apply a vibrational excitation load to the one of the positive and negative terminals. Impedance between the positive terminal and the negative terminal is monitored via a controller, and integrity of the weld junction of the one of the positive and negative terminals is evaluated based upon the impedance.
Abstract:
According to aspects of the present disclosure, a method includes selecting a faying surface of a first metal substrate, placing a reaction material on the faying surface, and attaching, prior to a second metal substrate being adjacent the first metal substrate, the reaction material to the faying surface via ultrasonic welding. The reaction material is configured to form a metallurgical joint between the faying surface and the second metal substrate adjacent the first metal substrate.
Abstract:
A method and a test fixture for evaluating a battery cell composed of a cell body having a plurality of electrode foils, a positive terminal and a negative terminal, wherein the positive terminal and the negative terminal are each joined to the cell body at weld junctions. This includes retaining the cell body of the battery cell in a first clamping device. The terminal is grasped in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper applies a vibrational excitation load to the terminal. A static stress end effector applies a static load to the terminal. Integrity of the weld junction is evaluated based upon the applied static load.
Abstract:
A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host machine, a check station, and a welding robot. At least one displacement sensor is positioned with respect to one of the welding equipment and the check station. The robot moves the horn and anvil via an arm to the check station, when a threshold condition is met, i.e., a predetermined amount of time has elapsed or a predetermined number of welds have been completed. The robot moves the horn and anvil to the check station, activates the at least one displacement sensor, at the check station, and determines a status condition of the welding equipment by processing the received signals. The status condition may be one of the alignment of the vibration welding equipment and the wear or degradation of the vibration welding equipment.
Abstract:
A welding assembly includes a sonotrode, cleaning station, and controller. The controller periodically commands clamping of the sonotrode onto the cleaning block, and a transmission of ultrasonic energy into the cleaning block for a calibrated duration sufficient for removing residual amounts of metal from welding pads of the sonotrode. The cleaning block may include an aluminum bar coated with a polymeric material, e.g., porous polyethylene silica or alumina composite. A thin sacrificial layer of an anti-adhesion material, e.g., colloidal silica, may be periodically applied to the welding pads, particularly after a transition from welding a first metal to welding a second metal. The sacrificial layer may be applied via a sponge, a saturated surface, or spraying.
Abstract:
A method for monitoring and controlling a vibration welding system includes collecting sensory data during formation of a welded joint using sensors positioned with respect to welding interfaces of a work piece. A host machine extracts a feature set from a welding signature collectively defined by the sensory data, compares and correlates the feature set with validated information in a library, and executes a control action(s) when the present feature set insufficiently matches the information. A welding system includes a sonotrode, sensors, and the host machine. The host machine is configured to execute the method noted above.
Abstract:
A check fixture measures a total clamp force applied by a welder device. The welder device includes a welding horn having a plurality of weld pads and welding anvil having a plurality of weld pads. The check fixture includes a base member operatively supporting a plurality of force sensors. The base member and the force sensors are received between the weld pads of the welding horn and the anvil pads of the welding anvil. Each force sensor is configured to measure an individual clamp force applied thereto by corresponding weld and anvil pads when the base member is received between the welding horn and the welding anvil and the welder device is in the clamped position. The individual clamp forces are used to determine whether the weld and/or anvil pads are worn or misaligned.