Abstract:
A method and a test fixture for evaluating a battery cell are described, wherein the battery cell is composed of a cell body having a plurality of electrode foils that are joined to both a positive terminal and a negative terminal at weld junctions. The method includes retaining the cell body of the battery cell in a first clamping device and gripping one of the positive and negative terminals in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper is employed to apply a vibrational excitation load to the one of the positive and negative terminals. Impedance between the positive terminal and the negative terminal is monitored via a controller, and integrity of the weld junction of the one of the positive and negative terminals is evaluated based upon the impedance.
Abstract:
A method and a test fixture for evaluating a battery cell are described, wherein the battery cell is composed of a cell body having a plurality of electrode foils that are joined to both a positive terminal and a negative terminal at weld junctions. The method includes retaining the cell body of the battery cell in a first clamping device and gripping one of the positive and negative terminals in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper is employed to apply a vibrational excitation load to the one of the positive and negative terminals. Impedance between the positive terminal and the negative terminal is monitored via a controller, and integrity of the weld junction of the one of the positive and negative terminals is evaluated based upon the impedance.
Abstract:
A method and a test fixture for evaluating a battery cell are described, wherein the battery cell is composed of a cell body having a plurality of electrode foils that are joined to both a positive terminal and a negative terminal at weld junctions. The method includes retaining the cell body of the battery cell in a first clamping device and gripping one of the positive and negative terminals in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper is employed to apply a vibrational excitation load to the one of the positive and negative terminals. Impedance between the positive terminal and the negative terminal is monitored via a controller, and integrity of the weld junction of the one of the positive and negative terminals is evaluated based upon the impedance.
Abstract:
A battery module is provided. The battery module includes a plurality of battery cell assemblies configured to electrically communicate with each other. Each battery cell assembly has an electrode stack enclosed by a case. The electrode stack is positioned in the case to form one or more peripheral spaces between the electrode stack and the case. Support members are positioned adjacent to each of the battery cell assemblies to contact a desired portion of the electrode stack. The support members are configured to focus a compressive force on a desired portion of the electrode stack. The compressive force urges gases formed during operation of the electrode stack into the peripheral spaces within the case.
Abstract:
A method and a test fixture for evaluating a battery cell composed of a cell body having a plurality of electrode foils, a positive terminal and a negative terminal, wherein the positive terminal and the negative terminal are each joined to the cell body at weld junctions. This includes retaining the cell body of the battery cell in a first clamping device. The terminal is grasped in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper applies a vibrational excitation load to the terminal. A static stress end effector applies a static load to the terminal. Integrity of the weld junction is evaluated based upon the applied static load.
Abstract:
A battery module is provided. The battery module includes a plurality of battery cell assemblies configured to electrically communicate with each other. Each battery cell assembly has an electrode stack enclosed by a case. The electrode stack is positioned in the case to form one or more peripheral spaces between the electrode stack and the case. Support members are positioned adjacent to each of the battery cell assemblies to contact a desired portion of the electrode stack. The support members are configured to focus a compressive force on a desired portion of the electrode stack. The compressive force urges gases formed during operation of the electrode stack into the peripheral spaces within the case.
Abstract:
A method and a test fixture for evaluating a battery cell are described, wherein the battery cell is composed of a cell body having a plurality of electrode foils that are joined to both a positive terminal and a negative terminal at weld junctions. The method includes retaining the cell body of the battery cell in a first clamping device and gripping one of the positive and negative terminals in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper is employed to apply a vibrational excitation load to the one of the positive and negative terminals. Impedance between the positive terminal and the negative terminal is monitored via a controller, and integrity of the weld junction of the one of the positive and negative terminals is evaluated based upon the impedance.
Abstract:
A method and a test fixture for evaluating a battery cell composed of a cell body having a plurality of electrode foils, a positive terminal and a negative terminal, wherein the positive terminal and the negative terminal are each joined to the cell body at weld junctions. This includes retaining the cell body of the battery cell in a first clamping device. The terminal is grasped in a terminal gripper. A dynamic stress end effector coupled to the terminal gripper applies a vibrational excitation load to the terminal. A static stress end effector applies a static load to the terminal. Integrity of the weld junction is evaluated based upon the applied static load.
Abstract:
A battery module is provided. The battery module includes a plurality of battery cell assemblies configured to electrically communicate with each other. Each battery cell assembly has an electrode stack enclosed by a case. The electrode stack is positioned in the case to form one or more peripheral spaces between the electrode stack and the case. Support members are positioned adjacent to each of the battery cell assemblies to contact a desired portion of the electrode stack. The support members are configured to focus a compressive force on a desired portion of the electrode stack. The compressive force urges gases formed during operation of the electrode stack into the peripheral spaces within the case.
Abstract:
Methods and battery cells formed thereby are provided that minimize issues with an exposed metallic layer at the peripheral edge of a flexible laminate forming a battery cell pouch. Sealing the periphery of the pouch is optimized projecting terminals of the electrochemical cell through perforations in the flexible laminate at a folded edge thereof. The folded edge does not present an exposed metallic layer and does not require a sealing material or use of sealing operation complicated by the terminals.